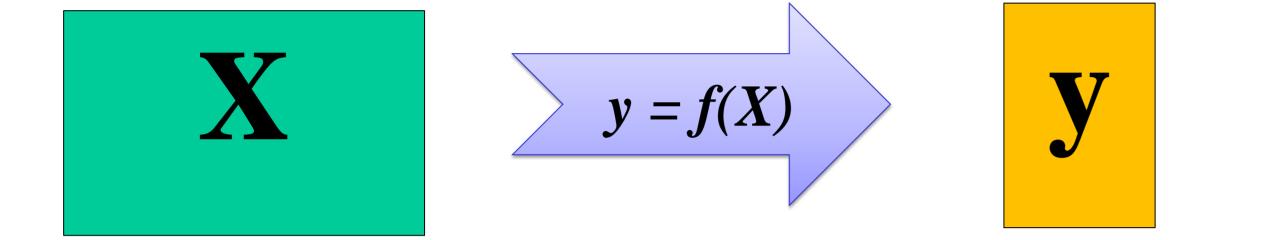
Sensometrics 2012

10th to 13th July 2012, Agrocampus Ouest, Rennes, FRANCE.


Quantitative property-acceptance relationship analysis: predicting consumer acceptance for sensory quality control of foods

Vanessa Souza*, Cleiton Nunes, Ana Carla Pinheiro, Sabrina Bastos

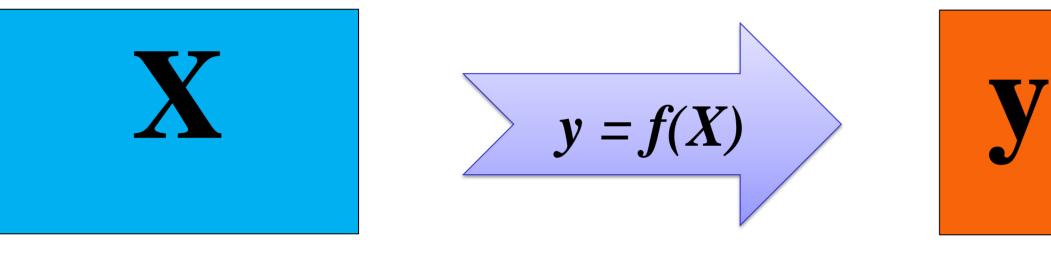
Department of Food Science, Federal University of Lavras. 37200-000, Lavras, MG, Brazil *vanessardsouza@gmail.com

INTRODUCTION

Quantitative structure-activity relationship (QSAR)

QPAR models						
Product	overall liking =					
French bread	-24.26 -0.09 L* _{ct} +0.22 L* _{cb} -0.40 a* _{ct} +0.22 a* _{cb} +0.25 b* _{ct} +0.06 b* _{cb} +0.11 weight -1.11 width +1.29 length					
Fish bread	14.12 +0.03 L* _{ct} -0.12 L* _{cb} -0.14 a* _{ct} -0.07 a* _{cb} -0.11 b* _{ct} +0.05 b* _{cb} +0.01 weight -0.30 moisture +1.62 bulk					
Roasted coffee	11.56 -0.35 L* +0.92 a* -0.31 b*					

RESULTS


molecular parameters

biological activity

well-established QSAR method summarizes a The relationship between chemical structures and biological activity, and then QSAR models predict the activities of new chemicals. It is widely used in drug development.

A SIMILAR IDEA !

Quantitative property-acceptance relationship (QPAR)

food parameters

Model performances										
Product	R² _c	$RMSE_{c}$	R² _{cv}	RMSE _{cv}	R ² y-rand	RMSE _{y-rand}	R² _t	RMSE _t		
French bread	0.93	0.32	0.83	0.52	0.36	0.97	0.81	0.57		
Fish bread	0.95	0.05	0.70	0.20	0.59	0.15	0.77	0.17		
Roasted coffe	0.98	0.04	0.95	0.06	0.53	0.20	0.85	0.17		

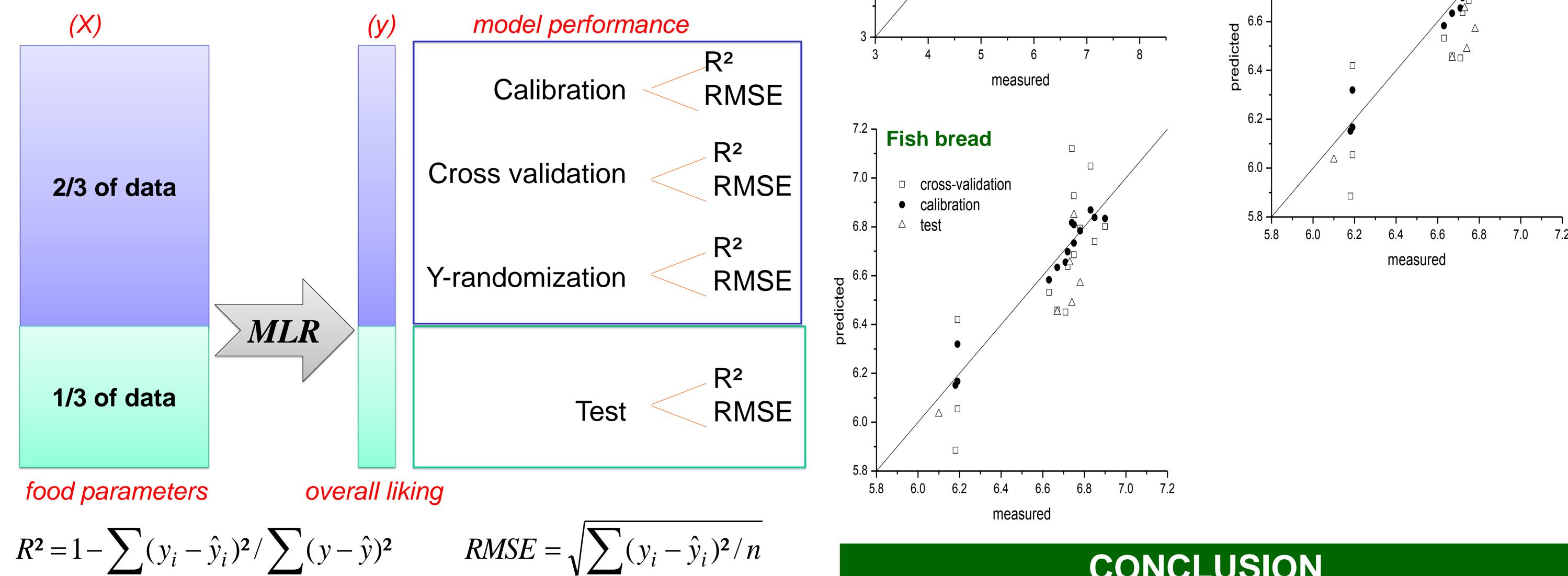
RMSF: root mean square error. cv: cross validation, c: calibration, t: test

Roasted coffee

□ cross-validation

calibration

 \triangle test


7.0

6.8

French bread 8 cross-validation calibration \triangle test

QPAR method summarizes a relationship between food properties and consumer liking, and then QPAR models predict the consumer liking of new food samples. It is useful for sensory quality control.

EXPERIMENTAL

predicted

4

Π

 \triangle

Data sets							
Product	X	Y					
French bread †	L* _{ct} , L* _{cb} , a* _{ct} , a* _{cb} , b* _{ct} , b* _{cb} , weight, width, length	overall liking					
Fish bread [†]	L* _{ct} , L* _{cb} , a* _{ct} , a* _{cb} , b* _{ct} , b* _{cb} , weight, moisture, bulk	overall liking					
Roasted coffee	L*, a*, b*	overall liking					

CONCLUSION

Consumer acceptance can be indirectly predicted by easy and rapid physical measurements using regression models. Once built and validated, the models can be used predict the consumer acceptance by rapid to measurements on the products. This is useful for quality control in industry, allowing to rapidly access the acceptance, an important characteristic of product.