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Introduction

Context of Preference Mapping:
• relate data on consumers’ preference to information on products

• identify attributes drivers of liking

Usual implementation of external preference mapping:
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Preference mapping

Extension to:
• sensory descriptors as a single consensus data table vs multiple data 

blocks vs multiway data
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• information on consumers with a L-shaped data structure
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See Dijksterhuis & al. (2005) ; Lengard & al. (2006) ; Endrizzi & al. (2010) ; Mage & al. (2012).



Preference mapping

Adapt model to fit:

• vectorial vs polynomial models
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Setting up of the products perceptual map:

f PCA PLS• use of PCA vs PLS
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Models of Quadratic PLS 

From PLS: t u
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Models of Quadratic PLS 

Gnanadesikan (1977), Wold & al. (1984), …
t u

Y

t u
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Wold & al. (1989), Baffi, Martin and Morris (1999) 
t u 1 Estimate c b a q adratic

Y

t u

X

1. Estimate c by a quadratic
regression of u on t

2 Update w by a Newton
1 2

w’p’ c’q’

2. Update w by a Newton-
Raphson-like linearization 
of the quadratic inner relation
estimated by linear PLS
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p q estimated by linear PLS



Models of Quadratic PLS : Höskuldsson’s approach

Höskuldsson (1992) extends the PLS1 criterion with the 
d ti d i t ti tquadratic and interactions terms. 

At step h, he seeks to maximize:
),²(cov...),²(cov),²(cov),²(cov 11

2
−++++ hhhhh ttyttytyty

given t1, …, th-1 already known, and th=Xh-1wh with ||wh ||=1.

On the basis of this criterion, Verdun & al. (2012) have 
proposed a revision of the original algorithm in order to 
guarantee convergence and optimality. 

This latter one is extended in the case of QPLS2. 
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Extension of Hoskuldsson’s approach to several Y: 
QPLS2QPLS2

The criterion can be modified to handle the case where Y has 
several variables.

At a step h, the algorithm seeks a component uh=Yh-1ch  and a 
component th=Xh 1wh that maximise:  co po e t th h-1wh t at a se

),²(cov...),²(cov),²(cov),²(cov 11
2

−++++ hhhhhhhhh ttuttututu ),(),(),(),( 11 hhhhhhhhh
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Extension of Hoskuldsson’s approach to several Y: 
some limitationssome limitations

The criterion uses the covariance between u on the one hand, 
and t and t2 on the other hand. These variables can be at 
very different scale levels.

If t2 variance is large compared to the variance of t, the 
objective criterion will be dominated by t2.j y
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α - Regularization of QPLS2

A parameter α is introduced to balance the linear and the

quadratic terms 0≤ α ≤1 :quadratic terms, 0≤ α ≤1 :

( ) ),²(cov1),²(cov 2
hhhh tutu αα −+

α is set to the value that leads to the highest RY
2 coefficient

of the quadratic model. q

D i th d fl ti t Y i d fl t d i t d t2During the deflation step, Y is deflated using t and t2.
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Application to Preference Mapping : The Coffee 
dataset (ESN 1996)dataset (ESN, 1996)

Data 

• 8 coffees

• 160 french consumers who have been partitionned in 3160 french consumers who have been partitionned in 3 
clusters

• Quantitative descriptive analysis: 23 sensory descriptors• Quantitative descriptive analysis: 23 sensory descriptors
• Smell descriptors : chocolate, intensity, moisty, sweet...

• Taste descriptors : sour, chocolate, metallic...
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Application to Preference Mapping : The Coffee dataset

Results of the Hierarchical Clustering:
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Application to Preference Mapping : The Coffee dataset

Products map obtained by QPLS:
~ 79% of the variance of X explained by t1 and t2

~ 80% of the variance of Y explained by the quadratic model (t1, t2)
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Application to Preference Mapping : The Coffee dataset

RY
2 explained for the three clusters
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Application to Preference Mapping : The Coffee dataset
– Clusters– Clusters

Consumers like both smooth coffee with chocolate
odors and strong coffee with intense odor

Consumers like both the green coffee with a lot of
perfume and the bitter coffee with an intense
aftertaste and an odor of roasted coffee
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Conclusion

QPLS presents several advantages for preference mapping:

• the criterion is very explicit and in line with PLS regression

• the (new) algorithm is simple and convergentthe (new) algorithm is simple and convergent.

But :

• in order to enhance the interpretation of the model, there is a 
need to operate a model selection. 
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QPLS, What else ?

Thank you for your attentionThank you for your attention
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