

Transitioning from Proportion of Distinguishers to a More Meaningful Measure of Sensory Difference

Virginie Jesionka, SKIM, Rotterdam, The Netherlands John M. Ennis, The Institute for Perception, Richmond, USA Benoit Rousseau, The Institute for Perception, Davis, USA

Proportion of Distinguishers

- Commonly used model
- Easy to understand and explain

Two Triadic Methods

Triangle Test

Unspecific

"Which product is the most different from the other two?"

<u>3-AFC</u>

Attribute specific

"Which product has the strongest sensory magnitude?"

Guessing Probability = 1/3

Gridgeman's Paradox

Gridgeman, N. T. (1970). A re-examination of the two-stage triangle test for the perception of sensory differences. *Journal of Food Science*, *35*, 87-91.

Study	Product	# Tosts	P _C		
Study	FIOUUCE	# 16313	Triangle	3-AFC	
Byer and Abrams, 1953	Bitter solutions	45	<mark>-47%-</mark>	71%	
Stillman, 1993	Party onion dip	108	39%	57%	
Tedja <i>et al.</i> , 1994	Salt Solutions	720 240 240	50% 43% 41%	75% 67% 62%	
Masuoka <i>et al.</i> , 1995	Beer	108	42%	69%	
Delwiche & O'Mahony, 1996	Chocolate pudding	156	68%	93%	
Rousseau & O'Mahony, 1997	Yogurt	180	58%	84%	

Gridgeman's Paradox Revisited

Thurstonian approach

A model which resolves Gridgeman's paradox

Thurstonian model principle

 δ = Distance between the means (μ_{χ} and μ_{γ}) in terms of standard deviations

d' = Experimental estimate of δ

Two main assumptions :

Variability

Decision Rule

Thurstonian view of Triangle Test

Thurstonian view of 3-AFC

Resolution of Gridgeman's Paradox

Resolution of Gridgeman's Paradox

A Method-Invariant Measure: δ

Connecting δ and Proportion Distinguishers

Tables and Tools to transition easily

Jesionka, V., Ennis, J., Rousseau B. (in preparation). Transitioning from Proportion of Distinguishers to a more meaningful measure of sensory difference, *Food Quality and Preference*

	_				3	-AFC							fx D E F G H J K L M N O P
<u>p</u> g						Tetr	ads						Triangle Test calculator (Thurstonian model) Those results are effective in the case of N independent triangle tests. If the tests include repetitions, check this paragraph :
	pd					Т	riangl	le					Thurstonian approach
1 3													You are looking for the equivalence between 5 (delta) and \textbf{p}_{D}
0	0	pp	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	ō (deita) 1.23
0	0	0.0	0.000	0.270	0.383	0.470	0.545	0.611	0.672	0.728	0.781	0.831	
0	0	0.1	0.879	0.925	0.969	1.012	1.054	1.095	1.134	1.174	1.212	1.250	For more information on Thurstonian models: Thurstonian
Ιo	l d	0.2	1 287	1.323	1.359	1.395	1 431	1 466	1.501	1.535	1.570	1 604	
1 0	l d	0.3	1 638	1.672	1 706	1 730	1 773	1 807	1 840	1 874	1 008	1 0/1	BEFORE the test AFTER the test
ا ا		0.0	4.075	2.000	2.042	2.077	2444	0.440	2.400	0.044	0.000	0.005	are looking for the sample size You are looking for the parameters of the test
1 3	1 3	0.4	1.975	2.009	2.043	2.077	2.111	2.146	2.180	2.215	2.250	2.205	
	9	0.5	2.321	2.357	2.393	2.429	2.466	2.503	2.541	2.579	2.617	2.656	N Nc p-value
	0	0.6	2.696	2.736	2.776	2.818	2.860	2.902	2.946	2.990	3.035	3.081	δ (delta) Power
	0	0.7	3.128	3.176	3.225	3.276	3.328	3.381	3.436	3.492	3.550	3.611	'ou are looking for the power
		0.8	3.673	3.738	3.806	3.876	3.950	4.027	4.109	4.195	4.287	4.385	
		0.9	4.491	4.606	4.732	4.872	5.030	5.212	5.428	5.698	6.061	6.645	

11th Sensometrics | July 9th-13th, 2012

Thank you

Virginie Jesionka: <u>v.jesionka@skimgroup.com</u>, www.skimgroup.com John M. Ennis: <u>john.m.ennis@ifpress.com</u>, www.ifpress.com Benoit Rousseau: <u>benoit.rousseau@ifpress.com</u>, www.ifpress.com