A new statistic to detect segmentation or unequal variance in 2-Alternative Choice (2-AC) testing

 $\begin{array}{ccc} {\sf Rune}\;{\sf H}\;{\sf B}\;{\sf Christensen}^{1,*} & {\sf John}\;{\sf M}\;{\sf Ennis}^2 & {\sf Daniel}\;{\sf M}\;{\sf Ennis}^2 \\ {\sf Per}\;{\sf B}\;{\sf Brockhoff}^1 \end{array}$

 $^1\mathrm{DTU}$ Informatics, IMM, Section for Statistics, Technical University of Denmark $^2\mathrm{The}$ Institute for Perception, Richmond, VA, USA

*Contact author: rhbc@imm.dtu.dk

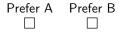
July 13th 2012

DTU Informatics Department of Informatics and Mathematical Modelling

Paired preference testing

 $2 \ products: \\$

- A Chocolate bar (standard)
- B Chocolate bar with darker chocolate

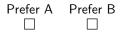

Paired preference testing

 $2 \ \text{products} : \\$

- A Chocolate bar (standard)
- B Chocolate bar with darker chocolate

2-Alternative Forced Choice (2-AFC):

• Do you prefer A or B?


Paired preference testing

 $2 \ \text{products} : \\$

- A Chocolate bar (standard)
- B Chocolate bar with darker chocolate

```
2-Alternative Forced Choice (2-AFC):
```

• Do you prefer A or B?

2-Alternative Forced Choice (2-AC):

• Do you prefer A or B, or do you have no preference?

Terminology:

Terminology: No preference \sim No difference \sim Ties

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

• More information and greater resolution in data

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

- More information and greater resolution in data
- Products may actually be equally liked

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

- More information and greater resolution in data
- Products may actually be equally liked
- No preference counts may support non-inferiority claims

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

- More information and greater resolution in data
- Products may actually be equally liked
- No preference counts may support non-inferiority claims

Why avoid a *no preference* option?

Terminology: No preference \sim No difference \sim Ties

Why allow for a *no preference* option?

- More information and greater resolution in data
- Products may actually be equally liked
- No preference counts may support non-inferiority claims

Why avoid a no preference option?

• Statistical methods less well-known

Consider the data:

	Prefer A	No Preference	Prefer B	Total
All counts	90	20	90	200

Consider the data:

	Prefer A	No Preference	Prefer B	Total
All counts	90	20	90	200

• Are there no differences wrt. preference in the population?

Consider the data:

	Prefer A	No Preference	Prefer B	Total
All counts	90	20	90	200

- Are there no differences wrt. preference in the population?
- What if there are two opposing segments?

Consider the data:

-	Prefer A	No Preference	Prefer B	Total
All counts	90	20	90	200
Segment 1	8	10	82	100
Segment 2	82	10	8	100

- Are there no differences wrt. preference in the population?
- What if there are two opposing segments?

Consider the data:

	Prefer A	No Preference	Prefer B	Total
All counts	90	20	90	200
Segment 1	8	10	82	100
Segment 2	82	10	8	100

- Are there no differences wrt. preference in the population?
- What if there are two opposing segments?

Ennis and Ennis (2012) suggest:

- 1 Perform placebo experiment
- 2 Estimate the *identicality norm*:

The expected proportion of counts for identical products

Ennis, D. M. and J. M. Ennis (2012). Accounting for no difference/preference responses or ties in choice experiments. *Food Quality and Preference 23*, 13-17.

Ennis' Approach:

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Identicality norm	0.4	0.2	0.4	

Ennis' Approach:

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Identicality norm	0.4	0.2	0.4	

$$\begin{split} X_2^2 &= (25-40)^2/40 + (15-20)^2/20 + (60-40)^2/40 \\ &= 5.625 + 1.250 + 10.00 = 16.875 \\ p\text{-value} &= 0.00022 \end{split}$$

Ennis' Approach:

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Identicality norm	0.4	0.2	0.4	

$$\begin{split} X_2^2 &= (25-40)^2/40 + (15-20)^2/20 + (60-40)^2/40 \\ &= 5.625 + 1.250 + 10.00 = 16.875 \\ p\text{-value} &= 0.00022 \end{split}$$

Assumes identicality norm known without error

Ennis' Approach:

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Identicality norm	0.4	0.2	0.4	

$$\begin{split} X_2^2 &= (25-40)^2/40 + (15-20)^2/20 + (60-40)^2/40 \\ &= 5.625 + 1.250 + 10.00 = 16.875 \\ p\text{-value} &= 0.00022 \end{split}$$

- Assumes identicality norm known without error
- Uncertainty in the placebo experiment not taken into account!

How do we take the uncertainty in the placebo experiment into account?

How do we take the uncertainty in the placebo experiment into account?

Assume $n = 100$ in placel	bo experiment:
----------------------------	----------------

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Placebo data	40	20	40	100

How do we take the uncertainty in the placebo experiment into account?

Assume $n =$: 100 in	placebo	experiment:
--------------	----------	---------	-------------

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Placebo data	40	20	40	100

Expected counts:

	Prefer A	No Preference	Prefer B	Total
Data	32.5	17.5	50	100
Placebo data	32.5	17.5	50	100

How do we take the uncertainty in the placebo experiment into account?

Assume $n =$: 100 in	placebo	experiment:
--------------	----------	---------	-------------

	Prefer A	No Preference	Prefer B	Total
Data	25	15	60	100
Placebo data	40	20	40	100

Expected counts:

	Prefer A	No Preference	Prefer B	Total
Data	32.5	17.5	50	100
Placebo data	32.5	17.5	50	100

The standard (genuine) Pearson χ^2 test:

 $X_2^2 = (25 - 32.5)^2/32.5 + (40 - 32.5)^2/32.5 + \ldots + (40 - 50)^2/50 = 8.18$ p-value = 0.0168 (previous p-value = 0.00022)

Effect of sample size in placebo experiment

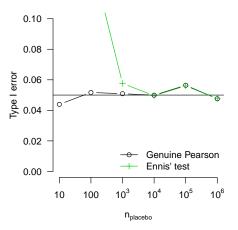
Standard Pearson test on 2×3 table:

$n_{placebo}$	χ^2_2 statistic	p-value
20	2.80	0.24619
50	5.50	0.06393
100	8.18	0.01677
1000	15.15	0.00051
10^{9}	16.87	0.00022

Effect of sample size in placebo experiment

Standard Pearson test on 2×3 table:

$n_{placebo}$	χ^2_2 statistic	p-value
20	2.80	0.24619
50	5.50	0.06393
100	8.18	0.01677
1000	15.15	0.00051
10^{9}	16.87	0.00022


Ennis & Ennis (2012): $X^2 = 16.87$ and *p*-value = 0.00022

Effect of sample size in placebo experiment

Standard Pearson test on 2×3 table:

$n_{placebo}$	χ^2_2 statistic	p-value
20	2.80	0.24619
50	5.50	0.06393
100	8.18	0.01677
1000	15.15	0.00051
10^{9}	16.87	0.00022

Ennis & Ennis (2012): $X^2 = 16.87$ and *p*-value = 0.00022

Preliminary results:

Preliminary results:

• No preference votes contain information

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Desirable properties of a good test:

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Desirable properties of a good test:

• Appropriate type I error

Preliminary results and purpose of this work

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Desirable properties of a good test:

- Appropriate type I error
- High power

Preliminary results and purpose of this work

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Desirable properties of a good test:

- Appropriate type I error
- High power
- Insightful interpretation

Preliminary results and purpose of this work

Preliminary results:

- No preference votes contain information
- Don't ignore the uncertainty in the placebo data
- The genuine Pearson test on the 2×3 table is a better option

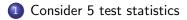
Are there even better tests?

Purpose of this work: Find a good test for 2-AC testing

Desirable properties of a good test:

- Appropriate type I error
- High power
- Insightful interpretation
- Easy to compute

Approach



Consider 5 test statistics

Compare the power of the 5 tests in a simulation study

Approach

Compare the power of the 5 tests in a simulation study

Parameterization:

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1
Genuine Pearson	$s_0=s_1$ and $p_0=p_1$	$s_0 \neq s_1$ or $p_0 \neq p_1$	2

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test statistics:

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1
Genuine Pearson	$s_0=s_1$ and $p_0=p_1$	$s_0 \neq s_1$ or $p_0 \neq p_1$	2

• Note: $p_0 = 0.5$ is given by the design!

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1
Genuine Pearson	$s_0=s_1$ and $p_0=p_1$	$s_0 \neq s_1$ or $p_0 \neq p_1$	2

- Note: $p_0 = 0.5$ is given by the design!
- The Genuine Pearson test is NOT the right test

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1
Genuine Pearson	$s_0=s_1$ and $p_0=p_1$	$s_0 \neq s_1$ or $p_0 \neq p_1$	2
Modified Pearson	$s_0=s_1$ and $p_1=0.5$	$s_0 eq s_1$ or $p_1 eq 0.5$	2

- Note: $p_0 = 0.5$ is given by the design!
- The Genuine Pearson test is NOT the right test

Parameterization:

Experiment	Prefer A	No Preference	Prefer B
Placebo	$p_0(1-s_0)$	s_0	$(1-p_0)(1-s_0)$
Preference	$p_1(1-s_1)$	s_1	$(1-p_1)(1-s_1)$

Test statistics:

Test	Null Hypothesis	Alternative Hypothesis	df
Tie effects	$s_0 = s_1$	$s_0 \neq s_1$	1
Directional effects	$p_1 = 0.5$	$p_1 \neq 0.5$	1
Genuine Pearson	$s_0=s_1$ and $p_0=p_1$	$s_0 \neq s_1$ or $p_0 \neq p_1$	2
Modified Pearson	$s_0=s_1$ and $p_1=0.5$	$s_0 eq s_1$ or $p_1 eq 0.5$	2
Pooled Test	$s_0=s_1$ and $p_1=0.5$	$s_0 \neq s_1$ or $p_1 \neq 0.5$	2

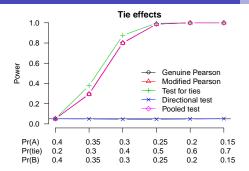
• Note: $p_0 = 0.5$ is given by the design!

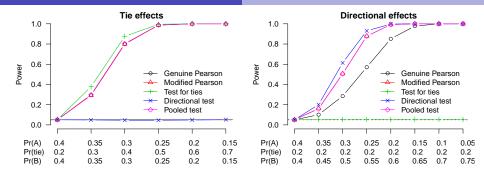
• The Genuine Pearson test is NOT the right test

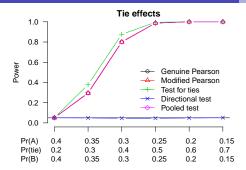
Approach

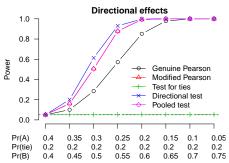
Settings for power simulations

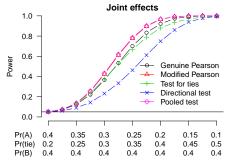
Placebo experiment (true identicality norm):

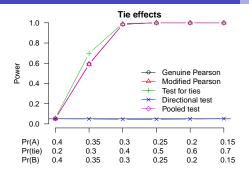

Prefer A	No Preference	Prefer B
0.4	0.2	0.4

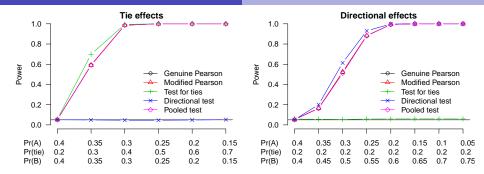

Power simulations in 6 settings:

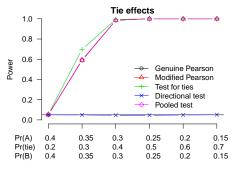

	Structures in preference data			
Placebo sample size	Tie effects Directional effects Joint effects			
100	1A	1B	1C	
1.000.000	2A	2B	2C	

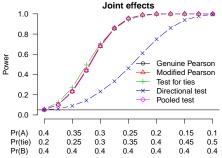

• $n_{preference} = 100$

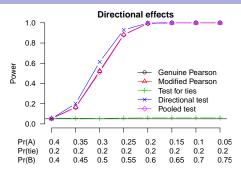

• 10.000 simulations at each point











Example — new insights

Example data:

	Prefer A	No Preference	Prefer B	Total
Placebo exp.	81	45	74	200
Preference exp.	37	12	51	100

Example — new insights

Pooled test

Tie effects

Example data:

		Prefer A	No Preference	Prefer B	Total
	Placebo exp.	81	45	74	200
	Preference exp.	37	12	51	100
ANO	VA-like an <u>alysis:</u> Test		χ^2 df	<i>p</i> -value	

Directional effects 2.23

7.00

4.78 1

2

1

0.030

0.029

0.136

Example — new insights

Example data:

	Prefer A	No Preference	Prefer B	Total
Placebo exp.	81	45	74	200
Preference exp.	37	12	51	100
ANOVA-like analysis:				

Test	χ^2	df	p-value
Pooled test	7.00	2	0.030
Tie effects	4.78	1	0.029
Directional effects	2.23	1	0.136
Modified Pearson	7.20	2	0.027

Conclusions and recommendations:

• Placebo data contain valuable information

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

Conclusions and recommendations:

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

Conclusions and recommendations:

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

Open questions:

• What may cause tie-effects?

Conclusions and recommendations:

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

- What may cause tie-effects?
 - Segmentation

Conclusions and recommendations:

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

- What may cause tie-effects?
 - Segmentation
 - Heterogeneity in preference

Conclusions and recommendations:

- Placebo data contain valuable information
- Don't ignore the uncertainty in the placebo data
- The modified Pearson and Pooled statistics have the highest power against general alternatives
- Use the Pooled statistic to provide insight into the structure of the data

- What may cause tie-effects?
 - Segmentation
 - Heterogeneity in preference
 - Unequal variances in the underlying perceptual distributions

A new statistic to detect segmentation or unequal variance in 2-Alternative Choice (2-AC) testing

 $\begin{array}{ccc} {\sf Rune}\;{\sf H}\;{\sf B}\;{\sf Christensen}^{1,*} & {\sf John}\;{\sf M}\;{\sf Ennis}^2 & {\sf Daniel}\;{\sf M}\;{\sf Ennis}^2 \\ {\sf Per}\;{\sf B}\;{\sf Brockhoff}^1 \end{array}$

 $^1 \rm DTU$ Informatics, IMM, Section for Statistics, Technical University of Denmark $^2 \rm The$ Institute for Perception, Richmond, VA, USA

*Contact author: rhbc@imm.dtu.dk

July 13th 2012

DTU Informatics Department of Informatics and Mathematical Modelling

