A Thurstonian model for the Degree of Difference test with extensions to unequal variance, sequence effects and replicated data

Rune H B Christensen^{1,*} John M Ennis² Daniel M Ennis² Per B Brockhoff¹

 $^1 \rm DTU$ Informatics, IMM, Section for Statistics, Technical University of Denmark $^2 \rm The$ Institute for Perception, Richmond, VA, USA

*Contact author: rhbc@imm.dtu.dk

July 11th 2012

DTU Informatics Department of Informatics and Mathematical Modelling

- 2 products 2 confusable stimuli:
 - A Chocolate bar (standard)
 - B Chocolate bar with less saturated fat

- 2 products 2 confusable stimuli:
 - A Chocolate bar (standard)
 - B Chocolate bar with less saturated fat

Setting:

- One pair of samples evaluated at each trial
- Question: Are the samples the same or different?

- 2 products 2 confusable stimuli:
 - A Chocolate bar (standard)
 - B Chocolate bar with less saturated fat

Setting:

- One pair of samples evaluated at each trial
- Question: Are the samples the same or different?

Stimuli:

- Same stimuli pairs: AA and BB
- Different stimuli pairs: AB and BA

- 2 products 2 confusable stimuli:
 - A Chocolate bar (standard)
 - B Chocolate bar with less saturated fat

Setting:

- One pair of samples evaluated at each trial
- Question: Are the samples the same or different?

Stimuli:

- Same stimuli pairs: AA and BB
- Different stimuli pairs: AB and BA

Same-Different test:		Degree-of-Difference test:				
Same	Different	Same	2	3	4	Different

• An unspecified test (like Triangle, Duo-Trio, Tetrad)

- An unspecified test (like Triangle, Duo-Trio, Tetrad)
- Only 2 samples compared at each trial

- An unspecified test (like Triangle, Duo-Trio, Tetrad)
- Only 2 samples compared at each trial
- Easily understood test (by consumers) (O'Mahony and Rousseau, 2002)

- An unspecified test (like Triangle, Duo-Trio, Tetrad)
- Only 2 samples compared at each trial
- Easily understood test (by consumers) (O'Mahony and Rousseau, 2002)
- No prior knowledge of products required (unlike A-not A)

- An unspecified test (like Triangle, Duo-Trio, Tetrad)
- Only 2 samples compared at each trial
- Easily understood test (by consumers) (O'Mahony and Rousseau, 2002)
- No prior knowledge of products required (unlike A-not A)
- Response bias (like A-not A)

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

Gaps in our understanding:

• Basic Thurstonian model unpublished

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

- Basic Thurstonian model unpublished
- Var(d') and power unknown

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

- Basic Thurstonian model unpublished
- Var(d') and power unknown
- Effect of $\tau,$ no. categories, and ratio of $\mathit{n_{same}/n_{diff}}$ unknown

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

- Basic Thurstonian model unpublished
- Var(d') and power unknown
- Effect of $\tau,$ no. categories, and ratio of $\mathit{n_{same}/n_{diff}}$ unknown
- No model for replications (as we have for m-AFC, Triangle, 2-AC etc.)

Literature:

- Quantitative linear models by Aust et al. (1985)
- χ^2 tests for replications by Bi (2002)
- ROC curve analysis by Irwin et al. (1993)

- Basic Thurstonian model unpublished
- Var(d') and power unknown
- Effect of $\tau,$ no. categories, and ratio of $\mathit{n_{same}/n_{diff}}$ unknown
- No model for replications (as we have for m-AFC, Triangle, 2-AC etc.)
- No model for unequal-variance (as we have for the A-not A with sureness)

Same-Different:

Same-Different:

Same-Different:

Degree of difference:

Difference distributions

Difference distributions

Difference distributions

Probability of answer in the jth category:

 $P("j" | \mathsf{Same-pair}) = f_s(\boldsymbol{\tau})$ $P("j" | \mathsf{Different-pair}) = f_d(\boldsymbol{\tau}, \delta)$

Probability of answer in the jth category:

$$\begin{split} P("j" | \mathsf{Same-pair}) &= f_s(\boldsymbol{\tau}) \\ P("j" | \mathsf{Different-pair}) &= f_d(\boldsymbol{\tau}, \delta) \end{split}$$

Maximum likelihood estimation of parameters:

likelihood $\sim f_s(\boldsymbol{\tau}) + f_d(\boldsymbol{\tau}, \delta)$

• 200 consumers

- 200 consumers
- Two chocolate bars (current and "healthy" alternative)

- 200 consumers
- Two chocolate bars (current and "healthy" alternative)
- 1 same-pair or 1 different-pair per consumer

- 200 consumers
- Two chocolate bars (current and "healthy" alternative)
- 1 same-pair or 1 different-pair per consumer
- 100 same-pairs + 100 different-pairs

- 200 consumers
- Two chocolate bars (current and "healthy" alternative)
- 1 same-pair or 1 different-pair per consumer
- 100 same-pairs + 100 different-pairs

Response scale:

- 200 consumers
- Two chocolate bars (current and "healthy" alternative)
- 1 same-pair or 1 different-pair per consumer
- 100 same-pairs + 100 different-pairs

Response scale:

Data obtained:

Pair	1	2	3	4	5	6	7	Total
Same	26	22	20	13	9	8	2	100
Diff	17	16	16	15	14	14	8	100

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	_	0.00394
Thurstonian DOD	3.12	1	0.00179

Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Thurstonian DOD	3.12	1	0.00179

Which test is the right one to use?

Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Thurstonian DOD	3.12	1	0.00179

Which test is the right one to use?

Advantages of model-based Thurstonian approach:

Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Thurstonian DOD	3.12	1	0.00179

Which test is the right one to use?

Advantages of model-based Thurstonian approach:

• Sensitive test of product differences

Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Thurstonian DOD	3.12	1	0.00179

Which test is the right one to use?

Advantages of model-based Thurstonian approach:

- Sensitive test of product differences
- Quantification of sensory intensity: d' = 1.30(0.24)

Is there a difference between products?

Test	Statistic	DF	p-value
Pearson χ^2	9.74	6	0.136
<i>t</i> -test	3.06	198	0.0025
Wilcoxon test	3836.50	-	0.00394
Thurstonian DOD	3.12	1	0.00179

Which test is the right one to use?

Advantages of model-based Thurstonian approach:

- Sensitive test of product differences
- Quantification of sensory intensity: d' = 1.30(0.24)
- Comparison of protocols

Unequal variances:

Difference distributions 0.5 different different 0.4 - $-\tau_{2} - \tau_{1}$ τ_2 τ_3 AA BB 0.3 - $\sigma^2 =$ 0.2 - $\sigma^2 = 2\sigma_B$ AB, BA $0.1 - \sigma^2 = 1 + \sigma_B$ 0.0 0 δ

Sequence effects:

Sequence effects:

Difference distributions

- Each individual has his own δ
- A model that handles replications

Advantages of a replicated model:

- Each individual has his own δ
- A model that handles replications

Advantages of a replicated model:

• Adjust for over-dispersion

- Each individual has his own δ
- A model that handles replications

- Each individual has his own δ
- A model that handles replications

Advantages of a replicated model:

- Adjust for over-dispersion
- Often more powerful tests of product differences

- Each individual has his own δ
- A model that handles replications

Advantages of a replicated model:

- Adjust for over-dispersion
- Often more powerful tests of product differences
- Quantification of heterogeneity

$$\delta_i \sim \log\text{-Normal}(\delta, \sigma_{rep}^2)$$

© Rune H B Christensen (DTU)

$$\delta_i \sim \log-\text{Normal}(\delta, \sigma_{rep}^2)$$

Probability of answer in the jth category:

$$\begin{split} P("j" | \textbf{Same-pair}) &= f(\boldsymbol{\tau}) & \text{independent samples} \\ P_i("j" | \textbf{Different-pair}) &= f(\boldsymbol{\tau}, \delta_i) & \text{NOT independent samples!} \end{split}$$

$$\delta_i \sim \log-\text{Normal}(\delta, \sigma_{rep}^2)$$

Probability of answer in the jth category:

$$\begin{split} P("j" | \textbf{Same-pair}) &= f(\boldsymbol{\tau}) & \text{independent samples} \\ P_i("j" | \textbf{Different-pair}) &= f(\boldsymbol{\tau}, \delta_i) & \text{NOT independent samples!} \end{split}$$

Computational challenge:

$$\mathsf{log-lik} = \sum_{i} \log \int_{0}^{\infty} g(\boldsymbol{\tau}, \delta, \sigma_{rep}, \delta_{i}) \, \mathsf{d}\delta_{i}$$

$$\delta_i \sim \log-\text{Normal}(\delta, \sigma_{rep}^2)$$

Probability of answer in the jth category:

$$\begin{split} P("j" | \textbf{Same-pair}) &= f(\boldsymbol{\tau}) & \text{independent samples} \\ P_i("j" | \textbf{Different-pair}) &= f(\boldsymbol{\tau}, \delta_i) & \text{NOT independent samples!} \end{split}$$

Computational challenge:

$$\mathsf{log-lik} = \sum_i \log \int_0^\infty g(oldsymbol{ au}, \delta, \sigma_{rep}, \delta_i) \, \mathsf{d} \delta_i$$

Solution:

• Gauss-Hermite quadrature

25 panelists — 8 replications.

Table: Paired degree-of-difference test, data adopted from (Bi, 2002)

	Similar	Don't know	Different	Total
Same pair	45	40	15	100
Different pair	36	34	30	100

25 panelists — 8 replications.

Table:	Paired	degree-of-difference	test,	data	adopted	from	(Bi,	2002))
--------	--------	----------------------	-------	------	---------	------	------	-------	---

	Similar	Don't know	Different	Total
Same pair	45	40	15	100
Different pair	36	34	30	100

Test	χ^2 -value	df	p-value
Stuart-Maxwell test (Bi, 2002)	3.85	2	0.149

25 panelists — 8 replications.

Table: Paired degree-of-difference test	, data adopted from	(Bi, 2002)
---	---------------------	------------

	Similar	Don't know	Different	Total
Same pair	45	40	15	100
Different pair	36	34	30	100

Test	χ^2 -value	df	p-value
Stuart-Maxwell test (Bi, 2002)	3.85	2	0.149
Naive DOD test for prod	6.10	1	0.0067

25 panelists — 8 replications.

Table: Paired degree-of-difference test,	, data adopted from	(Bi, 2002)
--	---------------------	------------

	Similar	Don't know	Different	Total
Same pair	45	40	15	100
Different pair	36	34	30	100

Test	χ^2 -value	df	p-value
Stuart-Maxwell test (Bi, 2002)	3.85	2	0.149
Naive DOD test for prod	6.10	1	0.0067
DOD test for reps	5.03	1	0.0124

25 panelists — 8 replications.

Table: Paired degree-of-difference test,	, data adopted from	(Bi, 2002)
--	---------------------	------------

	Similar	Don't know	Different	Total
Same pair	45	40	15	100
Different pair	36	34	30	100

Test	χ^2 -value	df	p-value
Stuart-Maxwell test (Bi, 2002)	3.85	2	0.149
Naive DOD test for prod	6.10	1	0.0067
DOD test for reps	5.03	1	0.0124
DOD test prod+reps	11.14	2	0.0038

Main results:

• DOD protocol brought up to speed with other discrimination protocols

- DOD protocol brought up to speed with other discrimination protocols
- Thurstonian model developed

- DOD protocol brought up to speed with other discrimination protocols
- Thurstonian model developed
- Three extensions of the Thurstonian DOD-model proposed:
 - Unequal variance
 - Sequence effects
 - Replications

- DOD protocol brought up to speed with other discrimination protocols
- Thurstonian model developed
- Three extensions of the Thurstonian DOD-model proposed:
 - Unequal variance
 - Sequence effects
 - Replications
- Implementation in sensR

- DOD protocol brought up to speed with other discrimination protocols
- Thurstonian model developed
- Three extensions of the Thurstonian DOD-model proposed:
 - Unequal variance
 - Sequence effects
 - Replications
- Implementation in sensR (soon...)

• How does the DOD protocol compare with Triangle, Tetrad, etc.?

- How does the DOD protocol compare with Triangle, Tetrad, etc.?
- How many categories should we choose? power, Var(d').

- How does the DOD protocol compare with Triangle, Tetrad, etc.?
- How many categories should we choose? power, Var(d').
- How likely are we to detect unequal variance, sequence effects and heterogeneity?

- How does the DOD protocol compare with Triangle, Tetrad, etc.?
- How many categories should we choose? power, Var(d').
- How likely are we to detect unequal variance, sequence effects and heterogeneity?
- How do these effects influence d' and power?
Open questions and future work:

- How does the DOD protocol compare with Triangle, Tetrad, etc.?
- How many categories should we choose? power, Var(d').
- How likely are we to detect unequal variance, sequence effects and heterogeneity?
- How do these effects influence d' and power?
- Are we able to distinguish between decision rules for DOD and A-not A with sureness?

Thanks to the scientific committee

Thank you for your attention!

- Aust, L. B., M. C. Gacula Jr., S. A. Beard, and R. A. Washam (1985). Degree of difference test method in sensory evaluation of heterogeneous product types. *Journal* of Food Science 50, 511–513.
- Bi, J. (2002). Statistical models for the degree of difference test. *Food Quality and Preference 13*, 13–37.
- Irwin, R. J., J. A. Stillman, M. J. Hautus, and L. M. Huddleston (1993). The measurement of taste discrimination with the same-different task: a detection-theory analysis. *Journal of Sensory Studies 8*, 229–239.
- O'Mahony, M. and B. Rousseau (2002). Discrimination testing: a few ideas, old and new. *Food Quality and Preference 14*, 157–164.