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Incomplete Block Design

Observe a person’s response to 12 different products
(randomized block design)
However for wine and other alcohol beverages products it
is difficult to obtain an individual response to several
products because of intoxication, carry-over, adaption and
fatigue.
To compensate use balanced incomplete block designs.
The goal is to determine if there is any clusters or grouping
within the data.
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Sensory-Informed Design: Bread Study

Sensory Profile
10-13 trained panelists
Each panelists evaluates the 12 different Bread products
on 42 attributes.
Attributes for crumb

Springiness
Firmness
Moistness
Chewiness
Particles
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Products in the Sensory Space
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Mixture Modelling

To find segments in the data, we assume the liking scores
arise from a Gaussian mixture

Y v
G∑

g=1

πgf (y |µg,Σg)

If we had a complete-block design we would just apply
standard methodology to this problem.
The literature commonly suggests imputation or some
variation thereof, for incomplete blocks.
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Imputation using the Average
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Missing Data

However, it is possible to estimate a covariance matrix
when some data are missing.
We can do this via the expectation-maximization (EM)
algorithm.
This approach is particularly useful when the covariance
matrix has a special structure.
And even more so when

Σg = Σ
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Covariance Structures

Mclust models - (Mclust in R)

Σg = λgDgAgDT
g

Factor Analyzers - (pgmm package in R)

Σg = ΛgΛT
g + Ψg
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Conditional Distribution of Missing Data

To use EM algorithm we need to calculate the sufficient
statistics for the missing data.

X1|X2 = x2 v MVN(µ1+Σ12Σ−1
22 (x2 − µ2) ,Σ11−Σ12Σ−1

22 Σ21)

However, we have to calculate the expected sufficient
statistics for the missing data in each row.
This amounts to m choose k different matrix inverses.
For the bread data 12 choose 6 =920 matrix inverses.
Complete E-steps are not computationally feasible.
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Incremental E-step or E-Step by column

If start with the missing data xi = (xi1, xi2,NA,NA) and fill
in the missing data with randomly generated observations.
For for a particular row we say x̂i = (xi1, xi2, x̂i3, x̂i4). So,
now we have a complete dataset.
Go by column and update each estimated observation via

x̂i,j = µj + Σj,−jΣ
−1
−j,−j

(
x̂i,−j − µ−j

)
e.g.

x̂3 = µ3 + Σ3,−3Σ−1
−3,−3 (x̂−3 − µ−3)

where x̂−3 = (xi1, xi2, x̂i4)

If we perform this iteratively then

(x̂3, x̂4)→ µ(3,4) + Σ(3,4),(1,2)Σ
−1
(1,2),(1,2)

(
x(1,2) − µ(1,2)

)
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EM by column

If we have the inverse matrix of Σ

Σ =

[
σ1,1 Σ1,−1

Σ−1,1 Σ−1,−1

]
and Σ−1 = Θ =

[
θ1,1 Θ1,−1

Θ−1,1 Θ−1,−1

]
1
θ1,1

Θ1,−1 = Σj,−jΣ
−1
−j,−j

This result is possible due to a relationship between the
Matrix Inverse and Schur Complement of a matrix
We now have an incremental E-step for the 1st moment.
We can obtain a similar result for the 2nd moment.
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EM

From Neal and Hinton (1998) the EM can be viewed as
minimizing

F (Nz,xi , θ) = logL(xi |θ)− DKL (Nz||Nz.xi )

E-step can be viewed as minimizing the Kullback-Leibler
(KL) divergence between the missing data distribution and
the conditional distribution of the missing data given the
observed data.
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Iris
Bread

Application

Iris Dataset.
Bread Dataset.
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Iris
Bread

Iris Dataset

One of the most famous data sets in statistics.
Four measurements on three types of flowers.
We standardized the data and for each observation we
randomly removed two measurements.

SepalLength Sepal .Width Petal .Length Petal .Width
−1.34 −1.31

−1.14 −1.34
0.33 −1.31

−1.50 0.01
−1.34 −1.31

−0.54 −1.05
...

...
...

...
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Iris
Bread

Original Iris Dataset
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Iris
Bread

Incomplete Iris Data
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Iris
Bread

Incomplete Iris Data with Imputed Values
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Iris
Bread

Comparison - Imputed Incomplete and Original Data
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Iris
Bread

Comparison of the Latent Space - Iris Data
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Iris
Bread

Clustering Comparision

Comparison of clustering results from using the incomplete iris
data and the iris data.

1 2 3
1 50 0 0
2 0 47 0
3 0 3 50
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Iris
Bread

Data

420 consumers.
12 white breads.
Each individual evaluated 6 breads within a sensory
informed incomplete block design.
Present-3 and present-4 designs were nested within the
present-6 design.
Six groups and two factors were chosen using the
Bayesian Information Criterion (BIC).
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Iris
Bread

Latent Space - Bread Liking Scores
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Iris
Bread

Conclusions

We can find MLEs using incremental EM.
We can obtain a reasonable estimate of the latent space
using only incomplete data.
This methodology can be used for imputation.
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Iris
Bread

The end

Thank you.
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