Design and Analysis of Sensory Informed Incomplete Block Designs

> Ryan Browne¹, Paul McNicholas¹, John Castura², Chris Findlay²

1 University of Guelph, Guelph, Ontario, Canada 2 Compusense, Guelph, Ontario, Canada

July 12, 2012

イロト イポト イヨト イヨト

Incomplete Block Design

- Observe a person's response to 12 different products (randomized block design)
- However for wine and other alcohol beverages products it is difficult to obtain an individual response to several products because of intoxication, carry-over, adaption and fatigue.
- To compensate use balanced incomplete block designs.
- The goal is to determine if there is any clusters or grouping within the data.

ヘロト 人間 ト ヘヨト ヘヨト

Sensory-Informed Design: Bread Study

Sensory Profile

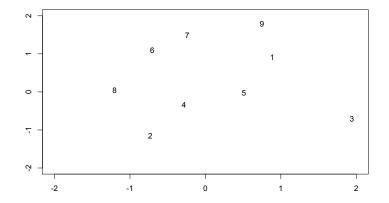
- 10-13 trained panelists
- Each panelists evaluates the 12 different Bread products on 42 attributes.
- Attributes for crumb
 - Springiness
 - Firmness
 - Moistness
 - Chewiness
 - Particles

→ Ξ → < Ξ →</p>

Design

Analysis

Products in the Sensory Space



Ryan Browne Design and Analysis of Incomplete Block Designs

ъ

э

Mixture Modelling

 To find segments in the data, we assume the liking scores arise from a Gaussian mixture

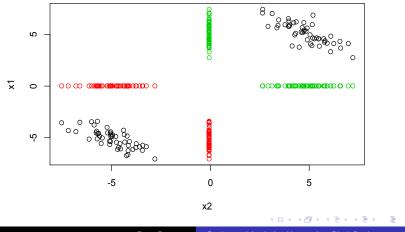
$$m{Y} \sim \sum_{g=1}^{G} \pi_{g} f(m{y}|\mu_{g}, \Sigma_{g})$$

- If we had a complete-block design we would just apply standard methodology to this problem.
- The literature commonly suggests imputation or some variation thereof, for incomplete blocks.

イロト イポト イヨト イヨト

Design Analysis

Imputation using the Average



Ryan Browne Design and Analysis of Incomplete Block Designs

- However, it is possible to estimate a covariance matrix when some data are missing.
- We can do this via the expectation-maximization (EM) algorithm.
- This approach is particularly useful when the covariance matrix has a special structure.
- And even more so when

$$\mathbf{\Sigma}_g = \mathbf{\Sigma}$$

프 🖌 🛪 프 🕨

Covariance Structures

Mclust models - (Mclust in R)

$$oldsymbol{\Sigma}_{oldsymbol{g}} = \lambda_{oldsymbol{g}} oldsymbol{D}_{oldsymbol{g}} oldsymbol{A}_{oldsymbol{g}} oldsymbol{D}_{oldsymbol{g}}^T$$

• Factor Analyzers - (pgmm package in R)

$$\mathbf{\Sigma}_g = \mathbf{\Lambda}_g \mathbf{\Lambda}_g^{\mathcal{T}} + \mathbf{\Psi}_g$$

프 🖌 🛪 프 🕨

< 🗇 🕨

Conditional Distribution of Missing Data

 To use EM algorithm we need to calculate the sufficient statistics for the missing data.

$$X_1 | X_2 = x_2 \backsim MVN(\mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (x_2 - \mu_2), \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21})$$

- However, we have to calculate the expected sufficient statistics for the missing data in each row.
- This amounts to *m* choose *k* different matrix inverses.
- For the bread data 12 choose 6 =920 matrix inverses.
- Complete E-steps are not computationally feasible.

Incremental E-step or E-Step by column

- If start with the missing data $x_i = (x_{i1}, x_{i2}, NA, NA)$ and fill in the missing data with randomly generated observations.
- For for a particular row we say x̂_i = (x_{i1}, x_{i2}, x̂_{i3}, x̂_{i4}). So, now we have a complete dataset.
- Go by column and update each estimated observation via

$$\hat{\mathbf{x}}_{i,j} = \mu_j + \Sigma_{j,-j} \Sigma_{-j,-j}^{-1} \left(\hat{\mathbf{x}}_{i,-j} - \mu_{-j} \right)$$

• e.g.

$$\hat{x}_3 = \mu_3 + \Sigma_{3,-3} \Sigma_{-3,-3}^{-1} (\hat{x}_{-3} - \mu_{-3})$$

where $\hat{x}_{-3} = (x_{i1}, x_{i2}, \hat{x}_{i4})$

• If we perform this iteratively then

$$(\hat{x}_3, \hat{x}_4) \rightarrow \mu_{(3,4)} + \Sigma_{(3,4),(1,2)} \Sigma_{(1,2),(1,2)}^{-1} (x_{(1,2)} - \mu_{(1,2)})$$

EM by column

If we have the inverse matrix of Σ

$$\Sigma = \begin{bmatrix} \sigma_{1,1} & \Sigma_{1,-1} \\ \Sigma_{-1,1} & \Sigma_{-1,-1} \end{bmatrix} \text{ and } \Sigma^{-1} = \Theta = \begin{bmatrix} \theta_{1,1} & \Theta_{1,-1} \\ \Theta_{-1,1} & \Theta_{-1,-1} \end{bmatrix}$$
$$\frac{1}{\theta_{1,1}} \Theta_{1,-1} = \Sigma_{j,-j} \Sigma_{-j,-j}^{-1}$$

- This result is possible due to a relationship between the Matrix Inverse and Schur Complement of a matrix
- We now have an incremental E-step for the 1st moment.
- We can obtain a similar result for the 2nd moment.

A 3 >

 From Neal and Hinton (1998) the EM can be viewed as minimizing

$$F(N_{z}, \mathbf{x}_{i}, \theta) = logL(\mathbf{x}_{i}|\theta) - D_{\mathsf{KL}}(N_{z}||N_{z,\mathbf{x}_{i}})$$

• E-step can be viewed as minimizing the Kullback-Leibler (KL) divergence between the missing data distribution and the conditional distribution of the missing data given the observed data.

ヘロト 人間 ト ヘヨト ヘヨト

- Iris Dataset.
- Bread Dataset.

<ロト <回 > < 注 > < 注 > 、

æ

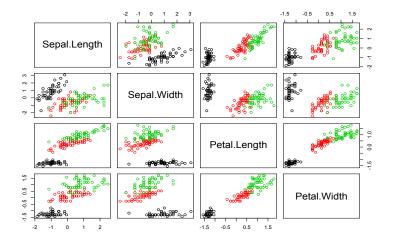
Design Analysis Application Iris Bread Iris Dataset

- One of the most famous data sets in statistics.
- Four measurements on three types of flowers.
- We standardized the data and for each observation we randomly removed two measurements.

SepalLength	Sepal.Width	Petal.Length	Petal.Width	
		-1.34	-1.31	
-1.14		-1.34		
	0.33		-1.31	
-1.50	0.01			
		-1.34	-1.31	
-0.54			-1.05	
:	÷	÷	:	

Iris Breac

Original Iris Dataset



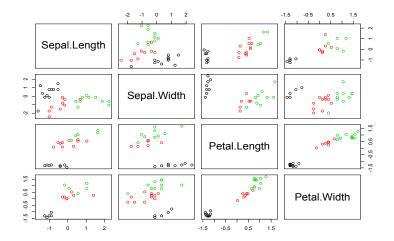
Ryan Browne Design and Analysis of Incomplete Block Designs

4 王

э

Iris Bread

Incomplete Iris Data



Ryan Browne Design and Analysis of Incomplete Block Designs

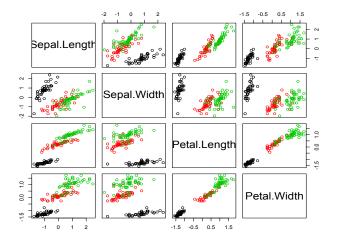
A D > A P >

(A) (E) (A) (E)

ъ

Iris Bread

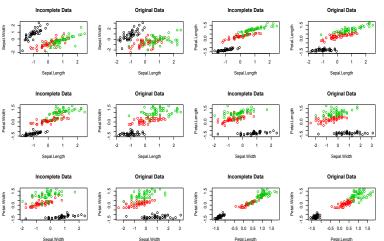
Incomplete Iris Data with Imputed Values



Ryan Browne Design and Analysis of Incomplete Block Designs

< ∃→

Comparison - Imputed Incomplete and Original Data



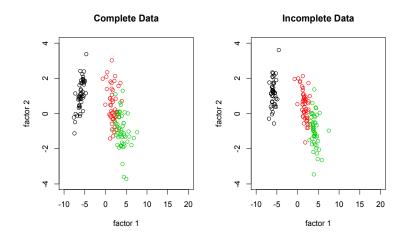
Sepal.Width

Ryan Browne

Design and Analysis of Incomplete Block Designs

Iris Bread

Comparison of the Latent Space - Iris Data



Ryan Browne Design and Analysis of Incomplete Block Designs

Comparison of clustering results from using the incomplete iris data and the iris data.

	1	2	3
1	50	0	0
2	0	47	0
3	0	3	50

ヘロン ヘアン ヘビン ヘビン

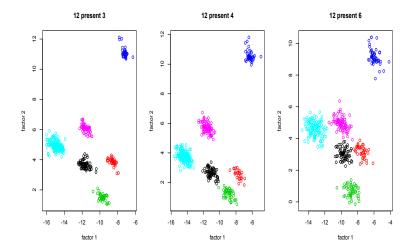
ъ

- 420 consumers.
- 12 white breads.
- Each individual evaluated 6 breads within a sensory informed incomplete block design.
- Present-3 and present-4 designs were nested within the present-6 design.
- Six groups and two factors were chosen using the Bayesian Information Criterion (BIC).

ヘロト ヘアト ヘビト ヘビト

lris Bread

Latent Space - Bread Liking Scores



Ryan Browne Design and Analysis of Incomplete Block Designs

- We can find MLEs using incremental EM.
- We can obtain a reasonable estimate of the latent space using only incomplete data.
- This methodology can be used for imputation.

→ E > < E >

< 🗇 🕨

	Design Analysis Application	lris Bread	
The end			

Thank you.

★ 문 ► ★ 문 ►

き のへで