Multiblock modeling for complex preference study Application to European preferences for smoked salmon

S. Bougeard⁽¹⁾ & M. Cardinal⁽²⁾

French Agency for food, environmental and occupational health & safety (Anses), Department of epidemiology
 French research institute for exploration of the sea (IFREMER), Department of biotechnologies and sea resources

Context

Multiblock modeling
 Application
 Conclusion & perspectives

Data & aims
 Usual data processing
 Aims of the talk

Table of contents

1 Context of external preference mapping

- Data & aims
- Usual data processing
- Aims of the talk

2 Multiblock modeling

- Optimization problem
- Solutions
- Interpretation tools

3 Application to European preferences for smoked salmon

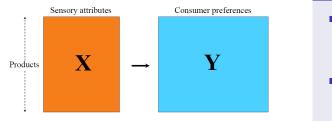
- Data & aims
- Descriptive interpretation
- Predictive interpretation

4 Conclusion & perspectives

Data & aims
 Usual data processing
 Aims of the talk

Linking sensory to consumer data

External multiblock preference mapping



Data features

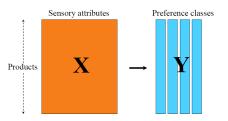
- Large number of explanatory variables (X) organized into meaningful blocks,
- Several variables to explain (Y) usually summed up in homogeneous classes.

- Descriptive : investigate the relationships between variables and between blocks in relation with the products,
- **Predictive** : assess the key drivers of preference at the variable and block levels. $1 \le \frac{1}{2}$

Data & aims
 Usual data processing
 Aims of the talk

Linking sensory to consumer data

External multiblock preference mapping



Data features

- Large number of explanatory variables (X) organized into meaningful blocks,
- Several variables to explain (Y) usually summed up in homogeneous classes.

- Descriptive : investigate the relationships between variables and between blocks in relation with the products,
- Predictive : assess the key drivers of preference at the variable and block levels.

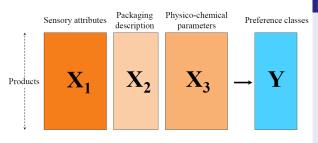
1. Context

Multiblock modeling
 Application
 Conclusion & perspectives

Data & aims
 Usual data processing
 Aims of the talk

Linking sensory to consumer data

External multiblock preference mapping



Data features

- Large number of explanatory variables (X) organized into meaningful blocks,
- Several variables to explain (Y) usually summed up in homogeneous classes.

- **Descriptive** : investigate the relationships between variables and between blocks in relation with the products,
- **Predictive** : assess the key drivers of preference at the variable and block levels. $1 \le \frac{1}{2}$

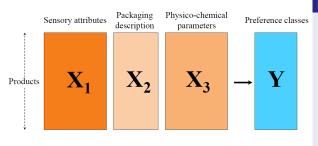
1. Context

Multiblock modeling
 Application
 Conclusion & perspectives

Data & aims
 Usual data processing
 Aims of the talk

Linking sensory to consumer data

External multiblock preference mapping



Data features

- Large number of explanatory variables (X) organized into meaningful blocks,
- Several variables to explain (Y) usually summed up in homogeneous classes.

- Descriptive : investigate the relationships between variables and between blocks in relation with the products,
- **Predictive** : assess the key drivers of preference at the variable and block levels. $1 \le \frac{1}{2}$

11. Data & aims
 12. Usual data processing
 13. Aims of the talk

Usual data processing for external multiblock preference mapping

Too simple data processing

- First step : link sensory attributes (X₁) to preferences (Y),
- Second step : link other measurements (X₂,...,X_K) to preferences (Y) to better characterize them.
- Limit : no overall resolution.

Too sophisticated data processing

- Use structural equation modeling (*e.g.*, PLS path modeling) to link (X₁,...,X_K) to preferences Y,
- **Limit** : too complicated iterative algorithm (no convergence proof).

Some multiblock proposals

- Multiblock PLS [Wold, 1984] : for the case of a single dataset Y, mbPLS=PLS,
- **PO-PLS** [Måge et al., 2008] : complicated iterative algorithm.

Data & aims
 Usual data processing
 Aims of the talk

Usual data processing for external multiblock preference mapping

Too simple data processing

- First step : link sensory attributes (X₁) to preferences (Y),
- Second step : link other measurements (X₂,...,X_K) to preferences (Y) to better characterize them.
- Limit : no overall resolution.

Too sophisticated data processing

- Use structural equation modeling (*e.g.*, PLS path modeling) to link (X₁,...,X_K) to preferences Y,
- Limit : too complicated iterative algorithm (no convergence proof).

Some multiblock proposals

- Multiblock PLS [Wold, 1984] : for the case of a single dataset Y, mbPLS=PLS,
- **PO-PLS** [Måge et al., 2008] : complicated iterative algorithm.

11. Data & aims
 12. Usual data processing
 13. Aims of the talk

Usual data processing for external multiblock preference mapping

Too simple data processing

- First step : link sensory attributes (X1) to preferences (Y),
- Second step : link other measurements (X₂,...,X_K) to preferences (Y) to better characterize them.
- Limit : no overall resolution.

Too sophisticated data processing

- Use structural equation modeling (*e.g.*, PLS path modeling) to link (X₁,...,X_K) to preferences Y,
- Limit : too complicated iterative algorithm (no convergence proof).

Some multiblock proposals

- Multiblock PLS [Wold, 1984] : for the case of a single dataset Y, mbPLS=PLS,
- **PO-PLS** [Måge et al., 2008] : complicated iterative algorithm.

1. Context

Multiblock modeling
 Application
 Conclusion & perspectives

11. Data & aims
 12. Usual data processing
 13. Aims of the talk

Aims of the talk

Methodological contribution

- Presentation of an original multiblock modeling method,
- Development of useful and relevant associated interpretation tools.

Applicative contribution

- Interpreted example of an external multiblock preference mapping in the food field,
- Available code program in R : ktab+1 package included within the ade4 package (http ://pbil.univ-lyon1.fr/ade4/).

1. Context

Multiblock modeling
 Application
 Conclusion & perspectives

11. Data & aims
 12. Usual data processing
 13. Aims of the talk

Aims of the talk

Methodological contribution

- Presentation of an original multiblock modeling method,
- Development of useful and relevant associated interpretation tools.

Applicative contribution

- Interpreted example of an external multiblock preference mapping in the food field,
- Available code program in R : ktab+1 package included within the ade4 package (http://pbil.univ-lyon1.fr/ade4/).

Optimization problem
 Solutions
 Interpretation tools

Table of contents

Context of external preference mapping

- Data & aims
- Usual data processing
- Aims of the talk

2 Multiblock modeling

- Optimization problem
- Solutions
- Interpretation tools

3 Application to European preferences for smoked salmon

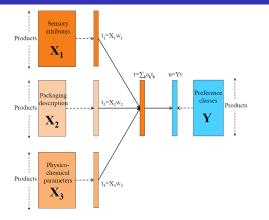
- Data & aims
- Descriptive interpretation
- Predictive interpretation

4 Conclusion & perspectives

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Overall criterion to maximize

Multiblock redundancy analysis [Bougeard et al., 2011]



Key ideas

- Sum up each dataset with latent variables,
- Relate the explanatory latent variables with the dependent one,
- Seek all these latent variables by maximizing an overall criterion,
- Get a direct eigensolution.

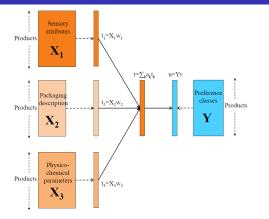
Criterion to maximize

Max.
$$\sum_k cov^2(u^{(1)}, t_k^{(1)})$$
 with $u^{(1)} = Yv^{(1)}, t_k^{(1)} = X_k w_k^{(1)}, t^{(1)} = \sum_k a_k^{(1)} t_k^{(1)},$
 $\sum_k a_k^{(1)^2} = 1$ and $||v^{(1)}|| = ||t_k^{(1)}|| = 1$

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Overall criterion to maximize

Multiblock redundancy analysis [Bougeard et al., 2011]



Key ideas

- Sum up each dataset with latent variables,
- Relate the explanatory latent variables with the dependent one,
- Seek all these latent variables by maximizing an overall criterion,
- Get a direct eigensolution.

Criterion to maximize

Max.
$$\sum_{k} cov^{2}(u^{(1)}, t_{k}^{(1)})$$
 with $u^{(1)} = Yv^{(1)}, t_{k}^{(1)} = X_{k}w_{k}^{(1)}, t^{(1)} = \sum_{k} a_{k}^{(1)}t_{k}^{(1)},$
 $\sum_{k} a_{k}^{(1)^{2}} = 1$ and $||v^{(1)}|| = ||t_{k}^{(1)}|| = 1$

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Direct eigensolution

Multiblock redundancy analysis [Bougeard et al., 2011]

First order solution

• $v^{(1)}$ is the eigenvector of $\sum_{k} Y' X_k (X'_k X_k)^{-1} X'_k Y$

$$t_k^{(1)} = P_{X_k} u^{(1)} / || P_{X_k} u^{(1)} ||$$

•
$$t^{(1)} = \sum_{k} \frac{cov(u^{(1)}, t_{k}^{(1)})}{\sqrt{\sum_{l} cov^{2}(u^{(1)}, t_{l}^{(1)})}} t_{k}^{(1)}$$

with the projector $P_{X_k} = X_k (X'_k X_k)^{-1} X'_k$

Higher order solution

Residuals of the orthogonal projections of X_k onto the subspaces spanned by $t^{(1)}$, $(t^{(1)}, t^{(2)}), \ldots$

Interpretation

- The explanatory multiblock structure is taken into account,
- The partial explanatory components t_k are derived from the projection of the dependent component u onto each X_k space,
- The more the partial components u and t_k are linked, the more they build the global component t.

nterpretation

Improve the prediction ability (orthogonalized regression).

ies 🔇

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Direct eigensolution

Multiblock redundancy analysis [Bougeard et al., 2011]

First order solution

• $v^{(1)}$ is the eigenvector of $\sum_{k} Y' X_k (X'_k X_k)^{-1} X'_k Y$

•
$$t_k^{(1)} = P_{X_k} u^{(1)} / || P_{X_k} u^{(1)} ||$$

•
$$t^{(1)} = \sum_{k} \frac{cov(u^{(1)}, t_{k}^{(1)})}{\sqrt{\sum_{l} cov^{2}(u^{(1)}, t_{l}^{(1)})}} t_{k}^{(1)}$$

with the projector $P_{X_k} = X_k (X'_k X_k)^{-1} X'_k$

Higher order solution

Residuals of the orthogonal projections of X_k onto the subspaces spanned by $t^{(1)}$, $(t^{(1)}, t^{(2)})$, ...

Interpretation

- The explanatory multiblock structure is taken into account,
- The partial explanatory components t_k are derived from the projection of the dependent component u onto each X_k space,
- The more the partial components u and t_k are linked, the more they build the global component t.

Interpretation

Improve the prediction ability (orthogonalized regression).

ies 🔇

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Main interpretation tools

[1] From a descriptive point of view : factorial graphical displays.

[2] Selection of the optimal model (cross-validation procedure).

[3] Aims

- Link all the explanatory variables with all the dependent ones,
- Sort the explanatory variables by order of priority,
- Sort the explanatory blocks by order of priority.

] Predictive interpretation tools

$$\beta_{p,q}^{(1 \to h_{opt})} = \sum_{h=1}^{h_{opt}} w^{(h)*} c^{(h)'}$$
$$\sum_{k=1}^{h_{opt}} \lambda^{(h)} - \frac{a_k^{(h)^2} w^{(h)}}{w^{(h)}}$$

$$VarImp_{p}^{(1 \rightarrow h_{opt})} = -$$

$$BlockImp_{k}^{(1 \rightarrow h_{opt})} = \frac{\sum_{h=1}^{h_{opt}} \lambda^{(h)} a_{k}^{(h)^{2}}}{\sum_{k=1}^{h_{opt}} \lambda^{(h)}}$$

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Main interpretation tools

[1] From a descriptive point of view : factorial graphical displays.

[2] Selection of the optimal model (cross-validation procedure).

[3] Aims

- Link all the explanatory variables with all the dependent ones,
- Sort the explanatory variables by order of priority,
- Sort the explanatory blocks by order of priority.

] Predictive interpretation tools

$$\beta_{p,q}^{(1\to h_{opt})} = \sum_{h=1}^{h_{opt}} w^{(h)*} c^{(h)'}$$
$$Varlmp_{p}^{(1\to h_{opt})} = \frac{\sum_{h=1}^{h_{opt}} \lambda^{(h)} \frac{a_{k}^{(h)^{2}} w^{(h)}_{k}}{\sum_{p=1}^{p} a_{k}^{(h)^{2}} v}}{\frac{b_{pp}}{b_{pp}} a_{k}^{(h)} v}$$

BlockImp
$$\binom{(1 \rightarrow h_{opt})}{k} = \frac{\sum_{h=1}^{h_{opt}} \lambda^{(h)} a_k^{(h)^2}}{\sum_{h=1}^{h_{opt}} \lambda^{(h)}}$$

21. Optimization problem
 22. Solutions
 23. Interpretation tools

Main interpretation tools

[1] From a descriptive point of view : factorial graphical displays.

[2] Selection of the optimal model (cross-validation procedure).

[3] Aims

- Link all the explanatory variables with all the dependent ones,
- Sort the explanatory variables by order of priority,
- Sort the explanatory blocks by order of priority.

[3] Predictive interpretation tools

$$\beta_{p,q}^{(1 \to h_{opt})} = \sum_{h=1}^{h_{opt}} w^{(h)*} c^{(h)'}$$

•
$$VarImp_{p}^{(1 \to h_{opt})} = \frac{\sum_{h=1}^{h_{opt}} \lambda^{(h)} \frac{a_{h}^{(h)} \cdot w_{p}^{(h)}}{\sum_{p=1}^{p} a_{h}^{(h)^{2}} w_{p}^{(h)}}}{\sum_{h=1}^{h_{opt}} \lambda^{(h)}}$$

BlockImp
$$_{k}^{(1 \rightarrow h_{opt})} = \frac{\sum_{h=1}^{h_{opt}} \lambda^{(h)} a_{k}^{(h)^{2}}}{\sum_{h=1}^{h_{opt}} \lambda^{(h)}}$$

(1)2 (1)2

- 31. Multiblock data & aims
- 32. Descriptive interpretation
- 33. Predictive interpretation

Table of contents

Context of external preference mapping

- Data & aims
- Usual data processing
- Aims of the talk

2 Multiblock modeling

- Optimization problem
- Solutions
- Interpretation tools

3 Application to European preferences for smoked salmon

- Data & aims
- Descriptive interpretation
- Predictive interpretation

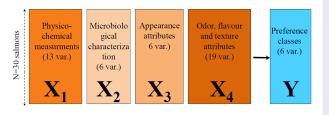
4 Conclusion & perspectives

Application 4. Conclusion & perspectives

31. Multiblock data & aims

Multiblock external preference mapping of smoked salmons

Eurosalmon project [Cardinal et al., 2004]



Salmon data features

Y: 6 preference classes from 1063 consumers [Semenou et al., 2007],

X : 44 potential preference drivers organized into 4 blocks.

- Descriptive : explain the consumer preferences with the explanatory variables
- Predictive : assess the key drivers of preference at the variable and block levels.

1. Context Application 4. Conclusion & perspectives

31. Multiblock data & aims

Multiblock external preference mapping of smoked salmons

Eurosalmon project [Cardinal et al., 2004]

Salmon data features

- Y: 6 preference classes from 1063 consumers [Semenou et al., 2007],
- X : 44 potential preference drivers organized into 4 blocks.

- Descriptive : explain the consumer preferences with the explanatory variables and blocks in relation with the tasted salmons.
- Predictive : assess the key drivers of preference at the variable and block levels.

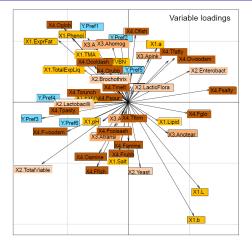
Multiblock data & aims
 Descriptive interpretation
 Predictive interpretation

Descriptive interpretation

Interpretation of the relationships between variables, blocks and products

Interpretation

- The preference classes 1 and 2, resp.
 3, 4 and 6, are roughly comparable,
- The preference classes 1 and 2 like pink salmons with intense global odor.
- The tasted salmons can be placed in relation with the expected preference.



32. Descriptive interpretation

Descriptive interpretation

Interpretation of the relationships between variables, blocks and products

Sal 30 al.27 Sal Sal.16 Sal.39 Sal.41 Sal.25 Sal 26 Sal.15 Sal.31 Sal. 19 Sal. 23 Sal.24 Sal.54 Sal.57 Sal.7 Sal.32 sal.9 0.0 Sal.46 Sal.14 **Global component t 2** Sal.51 Sal.49 36 Sal.2 Sal.38 Sal.22 0.5 Sal.8 6 Sal 34 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Global component t 1

Scores

 \checkmark direction of the increase of the average anses 🔇 expected preference.

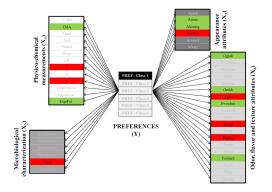
Interpretation

- The preference classes 1 and 2, resp. 3, 4 and 6, are roughly comparable,
- The preference classes 1 and 2 like pink salmons with intense global odor.
- The tasted salmons can be placed in relation with the expected preference.

Multiblock data & aims
 Descriptive interpretation
 Predictive interpretation

Key drivers of preference at the variable level (1)

Regression coefficients and bootstraped tolerance interval. Optimal model with 4 components.



Interpretation for preference class 1 (N = 121 consumers)

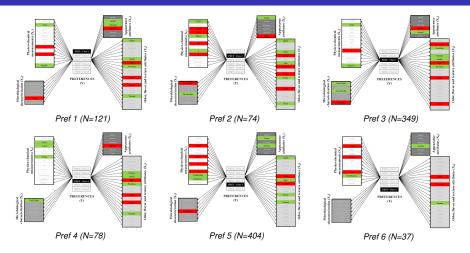
- The consumers of class 1 are sensible to appearance (L-, b*-, orange color+, color homogeneity+, slice tearing-)
- They also like some specific taste (salty-), flavors (Fglo-, Fwoodsm+, Famine-) and texture (Tcrunch+)

Positive significant key drivers of preference (GREEN), negative significant key drivers of preference (RED), non significant variables (WHITE-GREY)

- 1. Multiblock data & aims
- 33. Predictive interpretation

Key drivers of preference at the variable level (2)

Regression coefficients and bootstraped tolerance interval. Optimal model with 4 components.

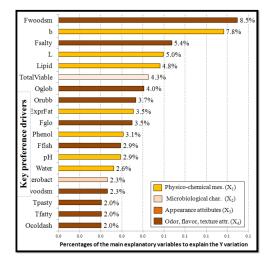


Results are difficult to sum up \rightarrow Difficulties to get overall interpretation of key drivers.^{anses Q}

Multiblock data & aims
 Descriptive interpretation
 Predictive interpretation

Key drivers of preference at the variable level (3)

Variable Importance expressed as percentage and bootstraped tolerance interval. Optimal model with 4 components.



Interpretation for overall preference

The model explains 82% of the variation in *Y* which is significantly explained by :

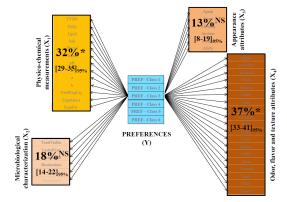
- The wood smoked flavor ("++" for classes 1, 3 and 4, "-" for classes 2, 5 and 6),
- The hue parameter b* (yellow) ("-" for classes 1, 2, 5 and 6),

 \rightarrow Both these variables explain 14.3% of the overall preference.

Multiblock data & aims
 Descriptive interpretation
 Predictive interpretation

Key drivers of preference at the block level

Block Importance expressed as percentage and bootstraped tolerance interval. Optimal model with 4 components.



Interpretation for overall preference

The model explains 82% of the variation in *Y*, which is significantly explained by :

- The odor, flavor and texture attributes (37%),
- The physico-chemical measurements (32%),

Table of contents

Context of external preference mapping

- Data & aims
- Usual data processing
- Aims of the talk

2 Multiblock modeling

- Optimization problem
- Solutions
- Interpretation tools

3 Application to European preferences for smoked salmon

- Data & aims
- Descriptive interpretation
- Predictive interpretation

4 Conclusion & perspectives

Conclusion & perspectives

Conclusion

- Multiblock Redundancy Analysis handles the specificity of complex data for external preference mapping,
- Increase the amount of extracted information from the data (both standard and specific results),
- Sort by order of priority key preference drivers at the variable and block level,
- Freely available method(s) and interpretation tools : ktab+1 package integrated in the ade4 software (http://pbil.univ-lyon1.fr/ade4/).

Perspectives

- Direct extension to the explanation of several dependent blocks (Y₁,...,Y_K) or to qualitative (dummy) variables,
- Handle information on products (experimental design to control some topical parameters) / PhD thesis (A. Eslami, 2010-2013)

Conclusion & perspectives

Conclusion

- Multiblock Redundancy Analysis handles the specificity of complex data for external preference mapping,
- Increase the amount of extracted information from the data (both standard and specific results),
- Sort by order of priority key preference drivers at the variable and block level,
- Freely available method(s) and interpretation tools : ktab+1 package integrated in the ade4 software (http://pbil.univ-lyon1.fr/ade4/).

Perspectives

- Direct extension to the explanation of several dependent blocks $(Y_1, \ldots, Y_{K'})$ or to qualitative (dummy) variables,
- Handle information on products (experimental design to control some topical parameters) / PhD thesis (A. Eslami, 2010-2013)

nses 🐛

Multiblock modeling for complex preference study Application to European preferences for smoked salmon

S. Bougeard⁽¹⁾ & M. Cardinal⁽²⁾

French Agency for food, environmental and occupational health & safety (Anses), Department of epidemiology
 French research institute for exploration of the sea (IFREMER), Department of biotechnologies and sea resources

AGROCAMPUS OUEST

