11th SENSOMETRICS 10th-13th July 2012, Rennes

Methodological development for sensory evaluation of product presenting biological variability: a case study on apple

<u>C. Bavay</u>, R. Symoneaux, I. Maitre, A. Kuznetsova, P.B. Brockhoff, E. Mehinagic

- Assessment of the sensory qualities of fruits and vegetables is of major interest for growers, retailers and industries
- Development of adapted sensory methodologies in the 1970s and 1980s (Heintz and Kader, 1983; Stevens and Albright, 1980; Williams and Carter, 1977)
- Working with fresh plant material poses special problems:
 - Changes of the characteristics with time
 - Non availability of suitable reference samples
 - Heterogeneity/biological variability of the plant material

"Real variation within a given genotype may make differences among genotypes more difficult to detect"

" One of the challenges in sensory evaluation of fruit is product variability "

Hampson et al., 2000

The heterogeneity of plant material in a commercial batch

- Difficulties still emphasised in fruits and vegetables studies (Allais and Létang, 2009; Azodanlou et al., 2003; Cetinkaya et al., 2006; Le Moigne et al., 2008; Lonchamp et al., 2009; Sousa et al., 2007)
- In studies on apples, related to variations in sensory properties within a cultivar and even within a piece of fruit

(Dever et al., 1995; Hampson et al., 2000; Harker et al., 2003; Harker et al., 2005; Seppä et al., 2012; Symoneaux et al., 2002; Vaysse et al., 2006; Watada and Abbot, 1985)

• However, majority of sensory studies only deal with the assessor source of variation through the assessor effect and the product x assessor interaction term

To observe fruit-to-fruit variability occurring within a commercial batch in sensory results

To compare 2 models of analysis of variance (ANOVA) taking the fruit-to-fruit variability into account or not

To recommend a methodology to get more reliable sensory results for products presenting variability

- 19 assessors with 60 hours training
- 7 sensory attributes for texture and taste (the main drivers of preferences in apples (Daillant-Spinnler et al., 1996))
 - Crunchiness
 - Firmness
 - Crispness
 - Juiciness
 - Fondant
 - Acidity
 - Sweetness
- 3 cultivars : Ariane, Braeburn and Pink Lady®

• 3 random replicates

- To observe the fruit-to-fruit variability : apples were cut and several assessors (3-4) tasted the same apple
 - The panel was divided into 6 groups

- X 3 replicates
- A total of 18 apples for each cultivar

Mean scores vary with the apples

BRAEBURN

7

Assessors who tasted the same apple agree

BRAEBURN

8

Accounting for fruit-to-fruit variability in data analysis

• Standard analysis : mixed model (Næs, Brockhoff & Tomic, 2010)

 $X_{ijk} = Cultivar_i + Assessor_j + Cultivar : Assessor_{ij} + \varepsilon_{ijk}$ where $\varepsilon_{ijk} \sim N(0, \sigma^2)$, Assessor_j $\sim N(0, \sigma^2_{Assessor})$ and Cultivar:Assessor_{ij} $\sim N(0, \sigma^2_{Cultivar:Assessor})$; all terms are independent

• Mixed hierarchical model including fruit effect

 $X_{ijkl} = Cultivar_i + Assessor_j + Cultivar : Assessor_{ij} + Fruit_{l(i)} + \varepsilon_{ijkl}$ where $\varepsilon_{ijlk} \sim N(0, \sigma^2)$, Assessor_j $\sim N(0, \sigma^2_{Assessor})$, Cultivar: Assessor_{ij} $\sim N(0, \sigma^2_{Cultivar: Assessor})$ and Fruit_{l(i)} $\sim N(0, \sigma^2_{Fruit})$; all terms are independent

• Mean Squares (MS) : to observe changes in MS distribution when fruit is added $(\pi - \pi)^2$

$$MS = \frac{(x_{i...} - x_{...})^2}{I - 1}$$

• Contribution to variance : to evaluate the part of variability of each factor Contribution to variance = $\frac{Variance \ component_k}{\sum_k Variance \ component_k}$

- Discrimination between cultivars (*p*-values of cultivar effect)
- Analysis were done with the lmerTest package (Kuznetsova, Brockhoff & Christensen) - R software, version 2.14.2

Decrease of the interaction term MS and the residual MS

Mean Square Crunchiness

Crispness

Juiciness

Acidity

Comparison of mean squares with and without fruit effect

A large contribution of the fruit

Crunchiness

29.38 %

35.91 %

20 40 60 80

22.65 %

3.18 %

0

8.88 %

Contribution to variance [%] **Crunchiness**

Juiciness							
_	_	1		,			
32.73 %							
35.91 %							
4.59 %							
F					٦		
0	20	40	60	80			

Firmness 28.42 %

Fondant 20.34 % 23.84 % 6.75 % 17.29 % 31.78 % 20 40 60 80 0

- The fruit contribution is large
- **Except for Sweetness**
 - Large assessor contribution

Sweetness

Contribution to variance [%]

A large contribution of the fruit

The fruit contribution is

- Larger than the Assessor contribution and Cultivar : Assessor contribution for Crunchiness, Firmness, Juiciness and Fondant
- At least larger than Assessor contribution for Crispness and Acidity
- Larger than Cultivar effect for Juiciness and Acidity
- Real variation within a given cultivar may make differences among cultivars more difficult to detect

Juiciness

22 72 0/

35.91 %

19.41 %

50 %

7.36 %

0

Firmness

Crispness

Fondant

Acidity

Sweetness

20 40 60 80

Contribution to variance [%]

The inclusion of fruit effect may change the conclusions

Standard analysis : mixed model

Significance levels for the sensory evaluation of the three apple cultivars

	Crunchiness	Firmness	Crispness	Juiciness	Fondant	Acidity	Sweetness
Cultivar	0.000 ***	0.000***	0.000 ***	0.001***	0.000 ***	0.003 ***	0.000***
Assessor	0.028	0.001	0.000	0.380	0.000	0.000	0.000
Cultivar:Assessor	0.999	1.000	0.304	0.053	0.996	1.000	0.185

Mixed hierarchical model including fruit effect

Significance levels for the sensory evaluation of the three apple cultivars

	Crunchiness	Firmness	Crispness	Juiciness	Fondant	Acidity	Sweetness
Cultivar	0.000***	0.000***	0.000***	0.065 NS	0.000***	0.047 *	0.000***
Assessor	0.000	0.000	0.000	0.382	0.000	0.000	0.000
Cultivar:Assessor	0.409	0.274	0.118	0.000	0.026	0.711	0.185
Fruit	0.000	0.001	0.065	0.000	0.000	0.000	0.137

- The fruit-to-fruit variability is an important characteristic of a batch
- Adding the fruit effect in the analysis makes sense
- Adding the fruit effect in the analysis can imply changes in conclusions
 - E.g. erroneous conclusion about the improvement of a product
- Recommendations
 - Collecting data : Each piece of fruit should be shared by several assessors
 - Analysing data : Hierarchical mixed ANOVA including fruit effect should be applied
- Perspective
 - Mixed Assessor Model

Thank you for your attention

Special thanks to the panelists, Corinne Patron and Isabel Saillard

