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Overview of Presentation

• Graphical Introduction

• Kellogg Data Case study: cracker taste test

 LC Cluster Models – Identify segments with different sensory preferences

 LC Regression Models – Simultaneously segment and estimate effects of product 
attributes for each segment

• For each segment determine the relevant attributes and attribute interactions 
from possibly hundreds, with small sample size (brief discussion as time permits):

 Penalty/regularization methods

 PLS Regression

 Correlated Component Regression (CCR) – New (Magidson, 2010a, 2010b)



Overview of Presentation

• Graphical Introduction

• Kellogg Data Case study: cracker taste test

 LC Cluster Models

 LC Regression Models – Segmentation based on effects of product attributes

 Correlated Component Regression (CCR) to Select Attributes and 
Attribute Interactions (e.g., flavor preference depends upon texture)



Idealized Example: Simulated data with 2 segments
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Mistakenly assuming a single 
homogeneous population, a 
single sub-optimal cracker can 
be developed with attributes at 
the centroid     .

Preferred Cracker Size
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Respondents in each 
segment (class) specify 
their preferred size and 
weight for crackers.



Idealized Example: Preferred Cracker Size & Weight
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Latent Class analysis 
identifies 2 segments.

Within each segment the 
preferred cracker weight 
and size are independent  
(local independence *).
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Preferred Cracker Size

Optimal -- develop 2 
crackers, 1 for each 
segment, at the class 
centroids.

* Class membership explains the correlation in the data.
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LC Results same as gold standard (discriminant analysis) 
-- only 4 cases misclassified – much better than K-means
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K-means recovery: 

• 24 cases misclassified;

or if Z-scores are used*

• 15 cases misclassified

•Magidson and Vermunt 
(2002a, 2002b)

*LC results not affected by linear transformations of variables -- thus, LC model 
provides same results (4 misclassified) if Z-scores used instead of original metric.



Real-world Data: Liking Ratings of Crackers A and B
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Again, suppose there are 2 segments

Segments (classes) equal on liking of Cracker A

Class 2 higher on liking of Cracker B –

• Class 1 prefers Cracker A over B

• Class 2 prefers Cracker B over A

Local dependence -- positive correlation remains  
within both classes. 

In real world some respondents give high ratings 
for all crackers while others tend to give lower 
ratings for all -- they like (dislike) all crackers or 
tend to use higher (lower) ratings (‘response style’).
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Liking of Cracker A

Line represents equal 
ratings for crackers A & B



Research Questions Addressed Here

1. For each of these data examples, how can Latent Class 
Modeling identify meaningful segments?

2. What techniques can assist in determining the most 
relevant attributes, and attribute levels for each segment?



9

Brief History of Latent Class Modeling

• LC proposed originally by Lazarsfeld (1950) as part of 
Latent Structure Analysis for dichotomous variables

• Maximum likelihood algorithm developed for nominal 
variables by Goodman (1974) (Now known as EM algorithm)

• Program advances: extension to many variables of 
differing scale types, approaches for handling local 
dependence, etc. – Latent GOLD (Vermunt and 
Magidson, 2000), Latent GOLD Choice (2003)

• Latent GOLD v 4.0 (2005) added continuous factors
– e.g., factor mixture model, random effects models

• Latent GOLD v 4.5 (2008) added general syntax language



Modern Definition of Latent Class Modeling

“The basic idea underlying latent class (LC) analysis is a very simple one: some of the 
parameters of a postulated statistical model differ across unobserved subgroups. These 
subgroups form the categories of a categorical latent variable (called ‘latent classes’) … 
Outside the social sciences, LC models are often referred to as finite mixture models.”

Vermunt, J. and Magidson, J. Latent Class Analysis. Encyclopedia of Social Science 
Research Methods, Sage Publications, 2003



Relative scale (from ranking data) may be converted to absolute scale by adding appropriate class-
specific constants obtained using additional information from ratings – Magidson, et. al. 2009

Mary judges attribute D as 
more important than C, but in
absolute terms she does not 
consider either to be very 
important (Figure A). 

For Jim, D is less important 
than D, and both important. 

Given only their rankings, it 
is tempting, but not valid, to
infer that Mary considers D to 
be more important than  Jim

Latent Class Methods* also Can be Used to Explain Heterogeneity 
with Ranking (Full, or Partial such as MaxDiff/Best-Worst) Data

jkβ

jkβ ′
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*Data fusion model 
developed using syntax 
version of LG Choice



General Latent GOLD Model

• Latent GOLD based on a simple probability structure from which most important LC models are derived

• Y is a set of dependent (endogenous) variables
• Z is a set of independent (exogenous) variables – predictors of Y, predictors of X (‘covariates’)
• X is a set of nominal/ordinal latent variables

• Y density is a weighted sum of class-specific exponential family densities (multinomial, Poisson, normal)
– Estimates are obtained by maximizing the appropriate likelihood function

Mixed mode data: choosing the appropriate probability density function P(y) for each dependent variable

• nominal: multinomial
• ordinal: restricted multinomial
• counts: Poisson / binomial
• continuous: (multivariate) normal

• Discrete choice data* – first choice only, full ranking, partial ranking (best/worst “MaxDiff”)

*Requires Latent GOLD Choice program
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Overview of Presentation

• Graphical Introduction

• Kellogg Data Case study: cracker taste test

 LC Cluster Models

 LC Regression Models – Segmentation based on effects of product attributes

 Correlated Component Regression (CCR) to Select Attributes and 
Attribute Interactions (e.g., flavor preference depends upon texture)



Application of latent class models to 
food product development:

a case study

For demo program, tutorials, and articles including 
Popper, Magidson, and Kroll (2004) article see website

http://statisticalinnovations.com/products/popper.pdf
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Background

• Food manufacturers need to understand the taste preferences of 
their target consumers

• Taste preferences are rarely homogenous –
different preference segments exist

• Latent class (LC) modeling can be used to determine meaningful 
segments and has many advantages over traditional clustering 
algorithms (e.g. hierarchical clustering, K-means)

• LC models also offer ways to separate out respondent 
heterogeneity due to:
– differences in relative preference for one product over another
– differences in average liking across all products
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Background

• To guide food developers, important to relate a 
segment’s taste preferences to the underlying 
sensory attributes of the product category (taste, 
texture, etc.)

• Some latent class models (LC regression/LC choice) 
allow attribute information to be used directly to predict 
liking, and thus used in forming segments, which can 
lead to more actionable results.
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The Case Study

• Products: 15 crackers

• Consumers: n=157 (category users)
– evaluated all products over three days
– 9-point liking scale (dislike extremelylike extremely)  
– completely randomized block design balanced for the effects 

of day, serving position, and carry-over
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LC Segmentation Models -- 2 Kinds

• Cluster – Each class represents a grouping of 
cases that are similar in their responses to 
selected segmentation (dependent) variables 
(e.g., liking ratings on each of the 15 crackers).

• Regression – Each class represents a grouping 
of cases that are similar in their regression 
coefficients.  Predictors in regression will be the 
cracker attributes (can also include interactions).
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Objectives

• To determine if consumers could be segmented 
according to their liking ratings of the crackers

• To estimate and compare alternative models
– LC Cluster model
– LC Regression model with a random intercept          

(nominal factor + one continuous factor)

• For the regression models, to identify and interpret 
segments in terms of the sensory attributes that 
drive liking for that segment

• Sparse regression methods for determining most 
relevant attributes and interactions for each segment



Overview of Presentation

• LC Cluster Models

• LC Regression Models

• Correlated Component Regression (CCR) to Select Predictors and Interactions
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LC Cluster Data Layout

Ratings for each of the 15 products plus the average rating for each respondent
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LC Cluster Model

• LC Cluster (Latent GOLD 4.5)
– liking rating for each product treated as continuous (or ordinal*)

– (a) with and b) without random intercept (i.e., with and without 
adjustment for response level effects)

– under both situations, BIC (Bayesian Information Criterion) 
identifies a two class solution as a better fit to the data than 
either a one-class or three-class solutions 

*for simplicity, equations illustrate continuous scale type



23

LC Cluster Model with T Product Ratings

t t xt tY α β ε= + +  

Yt is the rating for product t, for respondents i=1,2,…,N
αt is the intercept associated with product t
βxt is the effect for product t for cases in latent class x
εt is random error assumed to be normally distributed          

(class-independent error variances)

1
0

T

xt
t
β

=

=∑
Effect coding is used for parameter identification:

where:

(so intercepts capture average response levels)

fixed intercepts
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Cluster 1 = 52% Cluster 2 = 47% 

Results from Traditional LC Cluster Model 
-- These 2 Segments are Not Very Useful

These 2 segments show no significant 
differences across crackers. Segment 2
likes all crackers better than Segment 1 or 
prefers to rate at the higher end of the 
rating scale (response level effect).



Overview of Presentation

• LC Cluster Models

• LC Regression Models

• Correlated Component Regression (CCR) to Select Predictors and Interactions



LC Regression Model

• A typical LC regression model with 2 predictors Z=(Z1 , Z2) 

• For example, for Y continuous we have the LC linear regression model
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Model 1: LC Regression with Random Intercept 
and Discrete Random PRODUCT Effects

.( )im t im xt

im m i

logit Y
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α β
α α λ
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= +
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logit(Yj.k) is the adjacent category logit associated with rating 
Y = m (vs. m-1) for product t

C-Factor Fi is the factor score for the ith respondent

βxt is the effect of the tth product for class x
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)1,0(~ NFi

and effect coding is used for parameter identification:

),(~ 2λαα mim Nor m = 2,3,…,M

where:
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Model 1: LC Regression with Random Intercept 
and Discrete Random PRODUCT Effects
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Model R2 = 0.39
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Model 1: LC Regression with Random Intercept 
and Discrete Random PRODUCT Effects

• Correlation of random intercept with average liking 
is 0.997 (was 0.87 for D-Factor #1)

• Inclusion of random intercept is conceptually similar 
to mean-centering each respondents’ liking ratings
– LC Cluster model of the mean-centered data produces 

similar results

• Advantages of LC Regression over mean-centering
– maintains ordinal metric
– can be used with partial profile (incomplete block) designs 
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Including Sensory Attributes as Predictors

• Products: 15 crackers

• Consumers: n=157 (category users)
– evaluated all products over three days
– 9-point liking scale (dislike extremelylike extremely)  
– completely randomized block design balanced for the effects 

of day, serving position, and carry-over

• Sensory attribute evaluations: trained sensory 
panel (n=8)
– 18 flavor attributes, 20 texture attributes, 14 appearance 

rated on 15-point intensity scales (lowhigh)
– reduced (via PCA) to four appearance, four flavor, and four 

texture factors
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LC Regression Models

Restructure the data for LC regression:

• Dependent variable = overall liking of product 1,2,…,15
– T = 15 records (replications) per case

• Predictor = nominal PRODUCT variable (Model 1)
OR

Predictors = 12 sensory attributes (Model 2)
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LC Regression Data Layout

The data file is now restructured so that the dependent variable RATING can 
be predicted as a function of 1) PRODUCT or 2) the taste attributes.
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Model 2: LC Regression with Random Intercept 
and Discrete Random Product Attribute Effects
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where:

logit(Yim.t) is the adjacent category logit for product t with 
attributes Z1,Z2,…,ZQ

βxq is the effect of the qth attribute for class x
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Setup and Classification Output for 3-class Random Intercept 
Model 2 where Attributes do Not Predict Liking for Class 3



35

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

A
P

P
1

A
P

P
2

A
P

P
3

A
P

P
4

FL
V

1

FL
V

2

FL
V

3

FL
V

4

TE
X

1

TE
X

2

TE
X

3

TE
X

4

R
eg

re
ss

io
n 

C
oe

ffi
ci

en
ts
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Parameter Estimates from LC Regression on 
Sensory Variables with Random Intercept

Clusters differed most in 
their response to APP2

Regression Coefficients for Model 3

Coefficients for 
Cluster 3 set to 0
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Results from LC Regression on Sensory Variables 
with Random Intercept
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Model R2 = 0.39,
same as for Model 1

Mean ratings for Cluster 3 (8%) not shown
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LC Regression Model 2 Results

• A 2-class model was preferred over a 3-class model 
according to BIC.

• BIC for a 3-class restricted model was slightly better 
than for a 2-class unrestricted model
– The third class was restricted to have regression coefficients 

of 0 for all 12 predictors and represents individuals whose 
liking does not depend on the 12 sensory attributes

– This group can be of substantive interest for follow-up or be 
excluded as outliers. Here the group was small (8%) 
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LC Regression Model 2 Results

• Model 2 incorporates sensory information that 
provides direction for product development:
– overall, respondents agree that they prefer crackers that are 

high in Flav1-3, low in Flav4, low in Tex1 and high in Tex2-3
– segments differ primarily in their reaction to the appearance 

attributes: Cluster 1 prefers products high in APP2 and low in 
APP3.  Cluster 2 was not highly influenced by these two 
characteristics, but preferred crackers high in APP1. 

• Model 2 also provides information about the size the  
third cluster of respondents who are not affected by 
the sensory variables
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Summary of Results

• The traditional LC Cluster model confounded different taste 
preferences with response level effects
– Cluster 1 rated almost all products higher than Cluster 2

• LC Regression with a random intercept provided clear 
evidence of segment differences in consumers’ liking ratings
– While some products appealed to everybody, some products  

appealed much more to one segment than the other.
– LC Regression Model 2 produced a 3-segment solution which showed 

how the segments were affected by the sensory attributes.
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Conclusion and Follow-up Issue of 
Variable Selection with Small Samples

• Separate food products may be developed for each 
segment based on their different sensory 
preferences for crackers.

• However, there may be hundreds of sensory 
attributes, and for a given number of attributes there 
may be a large number of 2-way interactions (i.e., 
the effect of texture may vary depending upon 
appearance or flavor). Beyond 15–1 = 14 predictors, 
traditional techniques can not improve prediction 
(high-dimensional data)



Overview of Presentation

• LC Cluster Models

• LC Regression Models

• Correlated Component Regression (CCR) to Select Predictors and Interactions
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Variable Selection: Small Samples and Many Predictors

Current approaches for analyzing high dimensional data:

1. Penalty Approaches – tends to omit predictors that 
are highly correlated with other predictors in model

2. PLS Regression – requirement that components be 
orthogonal yields extra components

3. Correlated Component Regression (CCR) – Similar to PLS 
Regression but fewer, more interpretable components than PLS

 Comparisons of these methods with Sparse Data:                                  
Performance favors CCR over the other approaches



Results from Simulated Data --
Comparison of Several Variable Selection Methods:
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Design: Data simulated according to assumptions of Linear Discriminant Analysis

G1 = 28 predictors (including 15 weak predictors) plus G2 = 28 irrelevant predictors
2 Groups: N1 = N2 = 25;    100 simulated samples

Method M select G*(M) < 56 predictors for final model; Each method tuned using same sized 
validation file. Final models from each method evaluated based on large independent ‘test’ file.

Results favor CCR over the other approaches (Magidson and Yuan, 2010)

Lowest misclassification error rate: 
CCR (17.4%), sparse PLS (19.1%), Elastic net (20.2%), lasso (20.8%)

Fewest irrelevant variables: 
CCR (3.4), lasso (6.2), Elastic net (11.5), sparse PLS (13.1)

Most sparse solution (average # predictors in model):
CCR (14.5), lasso (17.3), Elastic net (28.3), sparse PLS (32.3)

Correlated Component Regression (CCR), Elastic Net (L1 + L2 regularization, Zou and Hastie, 2005), 
Lasso (L1 regularization), and sparse PLS regression (sgpls, Chun and Keles, 2009)



CORExpressTM

Correlated Component Regression (CCR)



CORExpressTM Beta Program

To apply for a beta version of CORExpressTM contact:

Will Barker
Sales & Marketing
375 Concord Ave., Suite 007
Belmont, MA 02478
+1 (617) 489-4490
will@statisticalinnovations.com
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