

Modelling of flavour quality in red raspberry

Dzeti Zait¹,

D. Donald Muir^{1,3} Angzzas Kassim¹, Susan McCallum² Alistair Paterson¹ & Julie Graham²

¹ SIPBS Royal College, University of Strathclyde, Glasgow G1 1XW Scotland
 ² SCRI Genetics & Breeding Group, Invergowrie, Dundee, DD2 5DA Scotland
 ³ DD Muir Consultants, Irvine KA11 1QQ Scotland

Introduction: Marker assisted breeding

- Flavours in fruit are continuous genetic traits.
- Trait intensity can be linked to DNA polymorphisms (markers)quantitative trait loci (QTL).
- Polymorphic DNA markers that can be linked to sensory and metabolite content variance.
- Breeding for premium flavour can be accelerated by QTL screening of seedlings before fruiting.
- Relationships of metabolite content to key flavour characters?

Red raspberry QTLs for flavour sensory quality

Red raspberry

- Key Scottish fruit crop with nutraceutical benefits.
- Repeat purchase by consumers require consistent flavour quality.
- An improvement strategy is Marker Assisted Breeding for flavour.

Fruit flavour quality 2. Determined by

1. Transport / accumulation of metabolites.

2. Determined by environment (e.g. season, open vs. covered cultivation) and genotype

- Independent variables-Metabolites content & physical traits (berry size and °Brix)
- Dependent variables-Sensory scores: sweetness, sourness, flavour intensity

Independent variables- Impact compound- raspberry ketone

Hypotheses:

- Sweetness, sourness and flavour intensity have complex relationships with fruit metabolites.
- Sweetness does not directly correlate to sugars content.
- Sourness does not directly correlate to acids content.
- Flavour intensity has contributions from volatile metabolites.
- Covered cultivation influences flavour characters in fruit.

PLS-1 model: Physical traits, non-volatile metabolites contents and sweetness sensory scoring

- 62% variation in sweetness accounted for by PC1
- Sweetness driven by: hexoses
 °Brix total solubles (TSS) Colour difference, esp. ∆E

Figure 1(a): PLS1 model:

Independent variable- Sugars/ acids content, colour meter values and °Brix total soluble solids

Dependent variable- Sweetness

SCN living technology

PLS-1 model: Physical traits, non-volatile metabolites content and sourness sensory scoring

- 76% variance in sourness accounted by PC1 &PC2
- Sourness is driven by: **10-berry weight** (water content)
- Hexoses have stronger effects than organic acids content on sourness scoring

Figure 1(b): PLS1 model:

Independent variable- Sugars/ acids content, colour meter values and °Brix total solids

Dependent variable- Sourness

SCN living technology

PLS-1 model: Physical traits, non-volatile metabolites content and flavour intensity sensory scoring

Figure 1(b): PLS1 model:

Independent variable- Sugars/ acids content, colour meter values and °Brix total solids

Dependent variable- Flavour intensity

 66% variation in flavour intensity accounted by PC1

 Flavour intensity is driven by:
 Brix (total solubles) hexoses organic acids 10-berry weight (water content)

Colour difference (ΔE) , green-red (a) and blueyellow (b) spectra are good predictors.

Conclusion PLS-1 models: Physical traits, non-volatile metabolite contents and sensory scoring

- (a) Common drivers for all sensory scoring models:
 - Sugars
 - Water content (berry weight)
 - Colour (pigmentation)
- (b) Instrumental correlations with sensory scoring:
 - °Brix (TSS content)
 - certain colour meter values
- (c) Non-linear relationships
 - -metabolites enhancing and muting more than a single sensory trait.
- (d) Complex relationships between sensory scores, affected by:
 - Quantities of metabolites in fruit cells
 - Sensory interactions in assessors in scoring

PLS-1 model: Volatile and non-volatile metabolites and sweetness sensory scoring

 71% variance in sweetness accounted by PC1 and PC2

 Sweetness driven by hexenol, geraniol, α-ionol, acetic acid. These volatiles increase effect of hexoses on sweetness.

Figure 2(a): PLS1 model:

Independent variable- Sugars/ acids & volatiles content Dependent variable- **Sweetness**

PLS-1 model: Volatiles and non-volatiles metabolites and flavour intensity scoring

 80% variance in flavour intensity scores accounted by PC1 and PC2

 Flavour intensity driven by: hexenol, α-ionone.

These volatiles increase effect of hexoses on flavour intensity.

Figure 2(b): PLS1 model:

Independent variable- Sugars/ acids and volatiles content Dependent variable- Flavour intensity Note: There is no adequate models to describe correlations between volatile contents and sourness

Conclusion

PLS-1 models: Volatile & non-volatile metabolite contents and sensory scoring

- Adding volatiles content improve modelling on sensory scoring.
- Important volatile driver of flavour- hexenol, Increases effect of hexoses on sweetness and flavour intensity.
- Sensory characters are not only accumulation of non-volatiles,
- There are sensory interactions of volatiles and non-volatiles in human assessors.

PLS-1 model: Physical traits, non-volatile metabolites, raspberry ketone and sweetness sensory scoring

Without RK,Y-explained, 41%

With RK,Y-explained, 42%

 1% increase in sweetness scoring variance

Changes in model contribution: (β-coefficients) for multiple variables

 Increases effects of hexoses, 10-berry weight, colour difference (∆E)

 Decrease effects of:
 ^oBrix (TSS content), malic acid, total acids

	β-coefficients		
Variables	Without RK	With RK	
Fructose	-3.190e-02	4.239e-02	Î
Glucose	0.138	0.152	Î
Total sugars	8.030e-03	7.069e-02	Î
Citric Acid	-3.588e-02	-1.580e-02	Û
Malic Acid	0.101	7.849e-02 🗖	Ñ
Total Acids	1.110e-02	5.839e-03	Ĩ
°Brix	0.555	0.433	Û
Weight	8.668e-02	0.164	Û
L*	-4.408e-02	-3.904e-02	
a*	3.119e-03	3.417e-02	
b*	-4.653e-03	2.831e-02	•
ΔΕ	5.563e-02	6.496e-02	Û
RK	-n/a-	1.882e-02	

SCN living technology

PLS-1 model: Physical traits, non-volatile metabolites, raspberry ketone and flavour intensity sensory scoring

Without RK,Y-explained, 40%

Note: There is no adequate model to describe correlation between RK content and sourness

- **5%** increase in flavour intensity scoring variance, same PC #, reduced variance explained by each PC.
- Increases effects of: hexoses, citric acid, 10-berry weight, certain colour meter values
- Decreases effects of: malic acid, total acids,
 Brix (TSS content)

Variables	β-coefficients		
Variables	Without RK	With RK	
Fructose	-3.190e-02	4.2319e-02	Î
Glucose	0.138	0.152	Ĭ
Total sugars	8.030e-03	7.069e-02	I
Citric Acid	-3.588e-02	-1.580e-02	Ū
Malic Acid	0.101	7.849e-02	Û
Total Acids	1.110e-02	5.839e-03	Û
°Brix	0.555	0.433	Û
Weight	8.668e-02	0.164	Î
L*	-4.408e-02	-3.904e-02	Î
a*	3.119e-03	3.417e-02	Ũ
b*	-4.653e-03	2.831e-02	ľ
ΔE	5.563e-02	6.496e-02	Û
RK	-n/a-	1.882e-02	

SCP living technology

PLS-1 model: Volatile metabolites, raspberry ketone and flavour intensity sensory scoring

Without RK,Y-explained, 21%

With RK, Y-explained, 19%

- Variance in flavour intensity scoring reduced by 2%,
- Increases effects of: Linalool, Benzyl-alcohol, Hexenol, Hexanoic acid.
- Decreases effects of: β-damascenone, Geraniol, α- and β-ionone, α-ionol, Acetic acid, Acetoin

Variables	β-coefficients		
variables	Without RK	With RK	
Linalool	-4.802e-02	-2.880e-02	1
β-damascenone	3.915e-02	7.267e-03	ĺ
Geraniol	9.408e-02	8.402e-02	ĺ
α-ionone	0.145	0.132	ĺ
β-ionone	0.175	0.132	ſ
Benzyl alcohol	-2.614e-02	-1.392e-02	1
α-ionol	-6.542e-04	-4.785e-02	ĺ
Acetic acid	-2.238e-02	7.994e-03	ĺ
Hexenol	-0.135	-0.149	1
Acetoin	6.681e-02	3.575e-02	ĺ
Hexanoic acid	4.367e-03	-9.899e-03	1
RK	-n/a-	4.483e-02	

Conclusions PLS-1 models: Raspberry ketone and sensory scoring

- Addition of RK into models:
 - Important aroma volatile-1- 5% change in sensory variance
 - Increases effects of non-volatiles on sensory scoring
 - Enhanced and muted effects of certain other volatiles

PLS-1 models: Metabolites and sensory scoring

Complex fruit flavour effect of non-volatiles content:

- Non linear correlations with volatile metabolites
- Interactions between sensory traits
- Sensory interactions in assessor

Multiple factors contribute to fruit sensory variance:

- Sensory stimuli not associated to flavour- e.g. colour

Thank you for your attention

Acknowledgement to all participants of this research: Prof. D. Donald Muir Dr. Angzzas Kassim Dr. Susan McCallum Dr. Alistair Paterson & Dr. Julie Graham